Skip to main content

Advertisement

Log in

Landraces-potential treasure for sustainable wheat improvement

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Agricultural production is facing serious threat from various biotic and abiotic stresses specifically under climatic challenges. It is becoming increasingly difficult to fulfill global food demand from limited arable land by cultivating modern cultivars with low buffering capacity. Primitive cultivars and landraces are evidently proven to be rich source of genetic variability as against modern cultivated varieties due to thousands of years’ of their cultivation under low input farming systems and extreme environmental conditions. Landraces serve as a potential reservoir of desirable allelic forms of valuable traits and therefore, could help in biodiversity enrichment and subsequently, stabilization of crop production under rapidly changing climatic conditions. Therefore, characterization and evaluation of untapped and unexplored landraces will be beneficial for harnessing genetic variability for economically important traits, biotic and abiotic stress tolerance and other desirable traits including quality, into modern high-yielding cultivars. A large collection of wheat landraces with enormous variability for different traits still remain within genebanks, without being explored for their utility. With the advancement of modern technologies, untapped variation of landraces can be easily made accessible through extensive phenotyping and trait discovery by using high throughput genomics approaches. Use of landraces in crop improvement will facilitate restoration of genetic diversity lost during the course of domestication and will benefit humankind worldwide by ensuring the incorporation of climate resilience and nutritional traits in modern cultivars. This review provides information about the evolution and diversity of wheat landraces and their utilization in wheat improvement for biotic and abiotic stresses and for quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdolshahi R, Safarian A, Nazari M, Pourseyedi S, Mohamadi-Nejad G (2013) Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Arch Agron Soil Sci 59(5):685–704

    Google Scholar 

  • Abido WA, Zsombik L (2018) Effect of water stress on germination of some Hungarian wheat landraces varieties. Acta Ecol Sin 38(6):422–428

    Google Scholar 

  • Akman H, Akgun N, Tamkoc A (2017) Screening for root and shoot traits in different wheat species and wild wheat relatives. Bot Sci 95:147–154

    Google Scholar 

  • Aktaş H 2016 Drought tolerance indices of selected landraces and bread wheat (Triticum aestivum L.) genotypes derived from synthetic wheat’s. Appl Ecol Env Res 14(4):177–189.

  • Al Khanjari S, Hammer K, Buerkert A, Röder MS (2007) Molecular diversity of Omani wheat revealed by microsatellites: I. Tetraploid Landraces Genet Resour Crop Evol 54(6):1291–1300

    Google Scholar 

  • Al Khateeb W, Schroeder D, Musallam I (2017) Phenotypic and molecular variation in drought tolerance of Jordanian durum wheat (Triticum durum Desf.) landraces. Physiol Molecular Biol Plants 23(2):311–319

    CAS  Google Scholar 

  • Al Lawati AH, Nadaf SK, AlSaady NA, Al Hinai SA, Almamari A, Al Adawi MH, Al Hinai RS, Al Maawali A (2021) Genetic Diversity of Omani Durum Wheat (sub sp.) Landraces. The Open Agric J 15(1):21–32

  • Alfeo V, Jaskula-Goiris B, Venora G, Schimmenti E, Aerts G, Todaro A (2018) Screening of durum wheat landraces (Triticum turgidum subsp. durum) for the malting suitability. J Cereal Sci 83:101–109

    CAS  Google Scholar 

  • Alipour H, Abdi H (2020) Interactive effects of vernalization and photoperiod loci on phenological traits and grain yield and differentiation of Iranian wheat landraces and cultivars. J Plant Growth Regulation 2:1

    Google Scholar 

  • Al-Naggar AM, El Abd MA, El-Shal MH, Anany AH (2020) Molecular assessment of genetic diversity among Egyptian landraces of Wheat (Triticum aestivum L.) Using Microsatellite Markers. Asian J Biochem Genet and Mol Biol 20:46–58

    Google Scholar 

  • Annual Report 2012 – 13, Directorate of Wheat Research, Karnal - 132001 (India).

  • Anonymous, 1923. Inventory of seed and plants no. 66. Washington. 91.

  • Anonymous (1976–2012) Annual Reports of National Bureau of Plant Genetic Resources (NBPGR), 1976–2012, NBPGR, New Delhi, India.

  • Aoun M, Kolmer JA, Rouse MN, Elias EM, Breiland M, Bulbula WD, Chao S, Acevedo M (2019) Mapping of novel leaf rust and stem rust resistance genes in the Portuguese durum wheat landrace PI 192051. G3 (Bethesda) 9:2535–2547

  • Arraiano LS, Brown JKM (2006) Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol 55:726–738

    Google Scholar 

  • Asad MA, Bai B, Lan C, Yan J, Xia X, Zhang Y, He Z (2014) Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50. The Crop J 2(5):308–314

    Google Scholar 

  • Ashraf M, O’leary JW (1996) Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: 1. Yield components and ion distribution. J Agron Crop Sci 176(2):91–101

    Google Scholar 

  • Ayala M, Guzmán C, Alvarez JB, Pena RJ (2013) Characterization of genetic diversity of puroindoline genes in Mexican wheat landraces. Euphytica 190(1):53–63

    Google Scholar 

  • Baboev SK, Buranov AK, Bozorov TA, Adylov BS, Morgunov AI, Muminzhonov K (2017) Biological and agronomical assessment of wheat landraces cultivated in mountain areas of Uzbekistan. Agric Biol 52(3):553–560

    Google Scholar 

  • Baboev S, Morgounov A and H. Muminjanov (2015) Wheat Landraces in Farmers’ Fields in Uzbekistan: National Survey, Collection, and Conservation, Food & Agriculture Org, Turkey pp 1–40.

  • Bai G, Su Z, Cai J (2018) Wheat resistance to Fusarium head blight. Can J Plant Pathol 40(3):336–346

    Google Scholar 

  • Bálint AF, Kovacs G, Sutka J (2003) Comparative studies on the seedling copper tolerance of various hexaploid wheat varieties and of spelt in soil with a high copper content and in hydroponic culture. Acta Agr Hungarica 51(2):199–203

    Google Scholar 

  • Ban T, Suenaga K (2000) Genetic analysis of resistance to Fusarium head blight caused by Fusarium graminearum in Chinese wheat cultivar Sumai 3 and the Japanese cultivar Saikai 165. Euphytica 113(2):87–99

    Google Scholar 

  • Bansal UK, Forrest KL, Hayden MJ, Miah H, Singh D, Bariana HS (2011) Characterization of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122(8):1461–1466

    CAS  PubMed  Google Scholar 

  • Barbosa Neto JF, de Carvalho FI (2002) Genetic variability in common wheat gemplasm based on COP. Genet Mol Biol 25:211–215

    Google Scholar 

  • Bechere E, Belay G, Mitiku D, Merker A (1996) Phenotypic diversity of tetraploid wheat landraces from northern and north-central regions of Ethiopia. Hereditas 124(2):165–172

    Google Scholar 

  • Belay G, Tesemma T, Bechere E, Mitiku D (1995) Natural and human selection for purple-grain tetraploid wheats in the Ethiopian highlands. Genet Resour Crop Evol 42(4):387–391

    Google Scholar 

  • Bhardwaj SC, Singh GP, Gangwar OP, Prasad P, Kumar S (2019) Status of wheat rust research and progress in rust management-indian context. Agronomy 9(12):892

    CAS  Google Scholar 

  • Bhattacharya M, Jafari-Shabestari J, Qualset CO, Corke H (1997) Diversity of starch pasting properties in Iranian hexaploid wheat landraces. Cereal Chem 74(4):417–423

    CAS  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceed National Acad Sci 106(23):9519–9524

    CAS  Google Scholar 

  • Blum A, Sinmena B, Golan G, Mayer J (1987) The grain quality of landraces of wheat as compared with modern cultivars. Plant Breed 99(3):226–233

    Google Scholar 

  • Boukid F, Folloni S, Ranieri R, Vittadini E (2018) A compendium of wheat germ: separation, stabilization and food applications. Trends Food Sci Tech 78:120–133

    CAS  Google Scholar 

  • Boukid F, Dall’Asta M, Bresciani L, Mena P, Del Rio D, Calani L, Sayar R, Seo YW, Yacoubi I, Mejri M (2019) Phenolic profile and antioxidant capacity of landraces, old and modern Tunisian durum wheat. European Food Res Tech 245(1):73–82

    CAS  Google Scholar 

  • Cai J, Bai G (2014) Quantitative trait loci for Fusarium head blight resistance in HuangcandouבJagger’wheat population. Crop Sci 54(6):2520–2528

    Google Scholar 

  • Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nature 532:421–422

    PubMed  Google Scholar 

  • Cao SQ, Luo HS, Wu CP, Jin SL, Jin MA, Jia QZ, Zhang B, Huang J, Wang XM (2010) Evaluation of 193 Gansu landraces on wheat to powdery mildew. Gansu Agric Sci Tech 5:8–10

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. In: Roberts CA (ed) Challenges and strategies of dryland agriculture. Crop Science Society of America Inc and American Society of Agronomy Inc, Madison, Wisconsin, pp 167–190

    Google Scholar 

  • Chaichi M, Sanjarian F, Razavi K, Gonzalez-Hernandez JL (2019) Phenotypic diversity among Iranian bread wheat landraces, as a screening tool for drought tolerance. Acta Physiol Plant 41(6):1–5

    CAS  Google Scholar 

  • Chartrain L, Brading PA, Brown JKM (2005) Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathology 54(2):134–143

  • Chaurasia S, Singh AK, Kumar A, Songachan LS, Yadav MC, Kumar S, Kumari J, Bansal R, Sharma PC, Singh K (2021) Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.). Genomics 113(5):3198–3215

    CAS  PubMed  Google Scholar 

  • Chhipa BR, Lal P (1985) Effect of soil salinity on yield, yield attributes and nutrient uptake by different varieties of wheat. Annals Edaphol Agrobiol 44:1681–1691

    Google Scholar 

  • Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci 49:403–410

    CAS  Google Scholar 

  • Commission on Genetic Resources for Food (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food & Agriculture Org United Nations, Rome

    Google Scholar 

  • Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222

    Google Scholar 

  • Danakumara T, Kumari K, Singh AK, Sinha SK, Pradhan AK, Sharma S, Jha SK, Bansal R, Kumar S, Jha GK, Yadav MC, Vara Prasad PV (2021) Genetic dissection of seedling root system architectural traits in a diverse panel of hexaploid wheat through multi-locus genome-wide association mapping for improving drought tolerance. Int J Mol Sci 22:7188

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Vita P, Nicosia OL, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26(1):39–53

    Google Scholar 

  • Dexter JE, Marchylo BA, Clear RM, Clarke JM (1997) Effect of Fusarium head blight on semolina milling and pasta-making quality of durum wheat. Cereal Chem 74(5):519–525

    CAS  Google Scholar 

  • Dhitaphichit P, Jones P, Keane EM (1989) Nuclear and cytoplasmic gene control of resistance to loose smut (Ustilago tritici (Pers.) Rostr.) in wheat (Triticum aestivum L.). Theor Appl Genet 78(6):897–903

    CAS  PubMed  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    CAS  PubMed  Google Scholar 

  • Díaz De León JL, Escoppinichi R, Zavala R, Mujeeb-Kazi A (2000) A sea-water based salinity testing protocol and the performance of a tester set of accumulated wheat germplasms. Annu Wheat Newsl 46:88–90

    Google Scholar 

  • Dib TA, Monneveux P, Araus JL (1992) Adaptation à la sécheresse et notion d’idéotype chez le blé dur. II Caractères Physiologiques D’adaptation Agronomie 12(5):381–393

    Google Scholar 

  • dos Santos TM, Taylor GJ, Vieira MR (2005) Evaluating the Madeiran wheat germplasm for aluminum resistance using aluminium-induced callose formation in root apices as a marker. Acta Physiol Plant 27(3):297–302

    Google Scholar 

  • Dotlačil L, Hermuth J, Stehno Z, Dvořáček V, Bradová J, Leišová L (2010) How can wheat landraces contribute to present breeding. Czech J Genet Plant Breed 46:S70–S74

    Google Scholar 

  • Dotlačil L, Hermuth J, Stehno Z, Dvořáček V, Leisova L (2008) Winter wheat landraces and obsolete cultivars-possible donors of characters for breeding. In proceedings of 11th International Wheat Genetics Symposium Sydney, Sydney University Press

  • DuToit F (1989) Components of resistance in three bread wheat lines to Russian wheat aphid (Homoptera: Aphididae) in South Africa. J Econ Entomol 6:1779–1783

    Google Scholar 

  • Dvorak J, Luo MC, Yang ZL (1998) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB et al., (eds) The origins of agriculture and crop domestication. In: Proceedings of the Harlan symposium. ICARDA, Aleppo, pp 235–251.

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:31–42

    CAS  PubMed  Google Scholar 

  • El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22(3):243–253

    CAS  Google Scholar 

  • Ellis MH, Bonnett DG, Rebetzke GJ (2007) A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157:209–214

    CAS  Google Scholar 

  • Farshadfar E, Elyasi P (2012) Screening quantitative indicators of drought tolerance in bread wheat (Triticum aestivum L.) landraces. Euro J Exp Bio 2(3):577–584

    Google Scholar 

  • Fayaz F, Sarbarzeh MA, Talebi R, Azadi A (2019) Genetic diversity and molecular characterization of Iranian durum wheat landraces (Triticum turgidum durum (Desf.) Husn.) using DArT markers. Biochem Genet 57(1):98–116

    CAS  PubMed  Google Scholar 

  • Feldman M, Kislev ME (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel J Plant Sci 55(3–4):207–221

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. World food situation (2018). https://www.fao.org/worldfoodsituation/csdb/en/.

  • Frankin S, Kunta S, Abbo S, Sela H, Goldberg BZ, Bonfil DJ, Levy AA, Avivi-Ragolsky N, Nashef K, Roychowdhury R, Faraj T (2020) The Israeli-Palestinian wheat landraces collection: restoration and characterization of lost genetic diversity. J Sci Food Agric 100(11):4083–4092

    CAS  PubMed  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals Bot 100:903–924

    Google Scholar 

  • Gebauer J, Al Khanjari S, Khan IA, Buerkert A, Hammer K (2010) Plant genetic resources in Oman-Evidence of millennia of cultural exchange in the Middle East. In: Buerkert A, Schlecht E (eds) Oases of Oman. Al Roya Press and Publishing House, Muscat, pp 28–33

    Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103(6):1166–1171

    CAS  PubMed  Google Scholar 

  • Ghimire B, Hulbert SH, Steber CM, Garland-Campbell K, Sanguinet KA (2020) Characterization of root traits for improvement of spring wheat in the Pacific Northwest. Agronomy J 112(1):228–240

    Google Scholar 

  • Goates BJ, Wilcoxson RD, Saari EE (1996) Common bunt and dwarf bunt. Bunt and smut disease of wheat: concepts and methods of disease management, CIMMYT, Mexico, DF.

  • Goel S, Singh B, Grewal S, Jaat RS, Singh NK (2018) Variability in Fe and Zn content among Indian wheat landraces for improved nutritional quality. Indian J Genet 78(4):426–432

    CAS  Google Scholar 

  • Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Comm 4(1):1–1

    Google Scholar 

  • Gupta HS, Kant L (2012) Wheat Improvement in Northern Hills of India. Agric Res 1:100–116

    Google Scholar 

  • Gupta A, Kant L, Mahajan V, Saha S, Gupta HS (2009) ‘Tank’; local land race of wheat for protection of wheat field against monkey raids an indigenous technological knowledge. Curr Sci 96:467–468

    Google Scholar 

  • Harlan JR (1992) Crops and man american society of agronomy, crop science society of america, Madison. Wisconsin 16(2):63–262

    Google Scholar 

  • Hede AR, Skovmand B, Reynolds MP, Crossa J, Vilhelmsen AL, Stølen O (1999) Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet Resour Crop Evol 46(1):37–45

    Google Scholar 

  • Hernandez-Espinosa N, Laddomada B, Payne T, Huerta-Espino J, Govindan V, Ammar K, Ibba MI, Pasqualone A, Guzman C (2020) Nutritional quality characterization of a set of durum wheat landraces from Iran and Mexico. LWT 124:109198

    CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C, Piscozzi R (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp monococcum L.). J Cereal Sci 44(2):182–193

    CAS  Google Scholar 

  • Hoffman JA, Metzger RJ (1976) Current status of virulence genes and pathogenic races of the wheat bunt fungi in the northwestern USA. Phytopathology 66(5):657–660

    Google Scholar 

  • Hollington PA (1998) Technological breakthroughs in screening/breeding wheat varieties for salt tolerance. In: Proceedings of the national conference on salinity management in agriculture, pp 2–5.

  • Hsam SLK, Huang XQ, Zeller FJ (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet 102:127–133

    CAS  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for Powdery Mildew Resistance in common wheat (Triticum aestivum L.). In: Bélanger RR et al (eds) The powdery mildews: a comprehensive treatise. The American Phytopathological Society, St. Paul, MN, USA, pp 219–238http://pgrinformatics.nbpgr.ernet.in/ip-pgr/GPRDtls.aspx

    Google Scholar 

  • Hu X, Dai S, Yan Y, Liu Y, Zhang J, Lu Z, Wei Y, Zheng Y, Cong H, Yan Z (2020) The genetic diversity of group-1 homoeologs and characterization of novel LMW-GS genes from Chinese Xinjiang winter wheat landraces (Triticum aestivum L.). J Appl Genetics 61(3):379–389

    CAS  Google Scholar 

  • Huang XQ, Hsam SL, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101(3):407–414

    CAS  Google Scholar 

  • Huang X, Wang L, Xu M, Röder M (2003) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858–865

    CAS  PubMed  Google Scholar 

  • Hubert KH, Buertsmayr HB (2006) Development of methods for bunt resistance breeding for organic Farming. Czech J Genet Plant Breed 42:66–71

    Google Scholar 

  • Hudson PS (1934) English wheat varieties II. Development of the wheat plant. Z Züchtung 19:70–108

    Google Scholar 

  • Igarashi S, Utimada C, Igarashi L, Kazuma A, Lopes R (1986) Pyricularia sp. em trigo. I. Ocorrência de Pyricularia sp. no Estado do Paranà. Fitopatol Bras 11:351–352

    Google Scholar 

  • Jaradat AA (2006) Phenotypic divergence in themeta-population of the Hourani durum wheat landrace. J Food Agric Env 4:186–191

    Google Scholar 

  • Jaradat AA (2013) Wheat landraces: a mini review. Emir J Food Agric 25(1):20–29

    Google Scholar 

  • Jia H, Zhou J, Xue S, Li G, Yan H, Ran C, Zhang Y, Shi J, Jia L, Wang X, Luo J (2018) A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. The Crop Journal 6(1):48–59

    Google Scholar 

  • Karamanos AJ, Economou G, Papastavrou A, Travlos IS (2012) Screening of Greek wheat landraces for their yield responses under arid conditions. Int Pl Prod 6(2):1–14

    Google Scholar 

  • Khokhar JS, King J, King IP, Young SD, Foulkes MJ, De Silva J, Weerasinghe M, Mossa A, Griffiths S, Riche AB, Hawkesford M (2020) Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS ONE 15(2):e0229107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshgoftarmanesh AH, Schulin R, Chaney RL, Daneshbakhsh B, Afyuni M (2010) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A Review Agron Sust Dev 30(1):83–107

    CAS  Google Scholar 

  • Kolmer JA, Oelke LM, Liu JQ (2007) Genetics of leaf rust resistance in three Americano landrace-derived wheat cultivars from Uruguay. Plant Breed 126:152–157

    Google Scholar 

  • Kolmer JA, Garvin DF, Hayden M, Spielmeyer W (2018) Adult plant leaf rust resistance derived from the wheat landrace cultivar Americano 44d is conditioned by interaction of three QTL. Euphytica 214(3):1–1

    CAS  Google Scholar 

  • Kumar R, Singh V, Pawar SK, Singh PK, Kaur A, Sharma D (2019) Abiotic stress and wheat grain quality: a comprehensive review. In: Hasanuzzaman M et al (eds) Wheat Production in Changing Environments. Springer, pp 63–87

    Google Scholar 

  • Kumar S, Kumari J, Bhusal N, Pradhan AK, Budhlakoti N, Mishra DC, Chauhan D, Kumar S, Singh AK, Reynolds M, Singh GP, Singh K, Sareen S (2020) Genome-wide association study reveals genomic regions associated with ten agronomical traits in wheat under late-sown conditions. Front Plant Sci. https://doi.org/10.3389/fpls.2020.549743

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Bhardwaj SC, Gangwar OP, Sharma A, Qureshi N, Kumaran VV, Khan H, Prasad P, Miah H, Singh GP, Sharma K (2021) Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor Appl Genet 134(3):849–858

    CAS  PubMed  Google Scholar 

  • Lan C, Liang S, Zhou X, Zhou G, Lu Q, Xia X, He Z (2010) Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology 100(4):313–318

    PubMed  Google Scholar 

  • Lan Q, Feng B, Xu Z, Guojun Z, Wang T (2013) Molecular cloning and characterization of five novel low molecular weight glutenin subunit genes from Tibetan wheat landraces (Triticum aestivum L.). Genet Resour Crop Evol 60:799–806

    CAS  Google Scholar 

  • Landi S, Hausman J-F, Guerriero G, Esposito S (2017) Poaceae versus abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci 8:1–9

    Google Scholar 

  • Leegood RC, Evans JR, Furbank RT (2010) Food security requires genetic advances to increase farm yields. Nature 464:831

    CAS  PubMed  Google Scholar 

  • Li T, Bai G, Wu S, Gu S (2011) Quantitative trait loci for resistance to fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet 122(8):1497–1502

    PubMed  Google Scholar 

  • Li J, van Bueren ET, Jiggins J, Leeuwis C (2012a) Farmers’ adoption of maize (Zea mays L.) hybrids and the persistence of landraces in Southwest China: implications for policy and breeding. Genet Resour Crop Evol 59(6):1147–1160

    Google Scholar 

  • Li T, Bai G, Wu S, Gu S (2012b) Quantitative trait loci for resistance to Fusarium head blight in the Chinese wheat landrace Huangfangzhu. Euphytica 185(1):93–102

    Google Scholar 

  • Li Q, Guo J, Chao K, Yang J, Yue W, Ma D, Wang B (2018) High-density mapping of an adult-plant stripe rust resistance gene YrBai in wheat landrace Baidatou using the whole genome DArT seq and SNP analysis. Front Plant Sci 9:1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Yi X, Tang S, Chen W, Wu F, Yang X, Jiang X, Shi H, Ma J, Chen G, Chen G (2019) Dissection of phenotypic and genetic variation of drought-related traits in diverse Chinese wheat landraces. The Plant Genome 12(3):190025

    CAS  Google Scholar 

  • Lin Y, Chen G, Hu H, Yang X, Zhang Z, Jiang X, Wu F, Shi H, Wang Q, Zhou K, Li C (2020) Phenotypic and genetic variation in phosphorus-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol 20(1):1–9

    Google Scholar 

  • Lodhi SS, John P, Bux H, Kazi AM, Gul A (2018) Resistance potential of Pakistani wheat landraces (Triticum aestivum L.) against stripe rust (Puccinia striformis) and karnal bunt (Tilletia indica). Pak J Bot 50(2):801–806

    CAS  Google Scholar 

  • Long L, Yao F, Yu C, Ye X, Cheng Y, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W (2019) Genome-Wide association study for adult-plant resistance to stripe rust in Chinese wheat landraces (Triticum aestivum L.) from the yellow and huai river valleys. Front Plant Sci 10:596

    PubMed  PubMed Central  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66(12):3477–3486

    CAS  PubMed  Google Scholar 

  • Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123(7):1099–1106

    CAS  PubMed  Google Scholar 

  • Ma J, Lin Y, Tang S, Duan S, Wang Q, Wu F, Li C, Jiang X, Zhou K, Liu Y (2020) A genome-wide association study of coleoptile length in different chinese wheat landraces. Front Plant Sci 11:677

    PubMed  PubMed Central  Google Scholar 

  • Mahmoud AF, Hassan MI, Amein KA (2015) Resistance potential of bread wheat genotypes against yellow rust disease under Egyptian climate. Plant Pathol J 31(4):402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamluk OF, Nachit MM (1994) Sources of resistance to common bunt (Tilletia foetida and T. caries) in durum wheat. J Phytopathol 142(2):122–130

    Google Scholar 

  • Manickavelu A, Niwa S, Ayumi K, Komatsu K, Naruoka Y, Ban T (2014) Molecular evaluation of Afghan wheat landraces. Plant Genet Resour 12(S1):S31–S35

    Google Scholar 

  • Maryami Z, Huertas-García AB, Azimi MR, Hernández-Espinosa N, Payne T, Cervantes F, Govindan V, Ibba MI, Guzman C (2020) Variability for glutenins, gluten quality, iron, zinc and phytic acid in a set of one hundred and fifty-eight common wheat Landraces from Iran. Agronomy 10(11):1797

    CAS  Google Scholar 

  • Masood MS, Javaid A, Rabbani MA, Anwar R (2005) Phenotypic diversity and trait association in bread wheat (Triticum aestivum L.) landraces from Baluchistan Pakistan. Pak J Bot 37(4):949–957

    Google Scholar 

  • Maucieri C, Caruso C, Bona S, Borin M, Barbera AC, Cavallaro V (2018) Influence of salinity and osmotic stress on germination process in an old Sicilian landrace and a modern cultivar of Triticum durum Desf. Cereal Res Comm 46(2):253–262

    CAS  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Rogers J, Gale MD (1998) Catalogue of gene symbols for wheat. In Slinkard AE (ed) In: Proceedings of the 9th Int Wheat Genet Symp University of Saskatchewan, Saskatoon: University Extension Press. pp 1–235.

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Komugi Wheat Genetic Resources Database. Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp.

  • Mehta PS, Sharma AK, Negi KS, Muneem KC (2008) Traditional crop diversity in kumaon himalaya of Uttarakhand State-A Case Study. Indian J Plant Genet Resour 21(3):159–166

    Google Scholar 

  • Mehta PS, Arya M, Singh R, Rawat R, Bisht IS (2019) Wheat (Triticum aestivum L.) Landrace Diversity in Traditional Production Landscapes of Uttarakhand Himalaya in North-Western India. Indian J Plant Genet Resour 32(2):181–191

    Google Scholar 

  • Mellers G, Aguilera JG, Bird N, Variani Bonato AL, Bonow S, Caierão E, Consoli L, Santana FM, Simmonds J, Steed A, Montan Torres GA (2020) Genetic characterization of a wheat association mapping panel relevant to brazilian breeding using a high-density single nucleotide polymorphism array. Genes Genomes Genet 10(7):2229–2239

    Google Scholar 

  • Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 5–6:480–493

    Google Scholar 

  • Metzger RJ, Rhode CR, Hoffmann JA (1977) Inheritance of resistance to common bunt in Triticum aestivum L. ‘PI 178383’. In Agronomy Abstracts. ASA, Madison, WI.

  • Mohan A, Schillinger WF, Gill KS (2013) Wheat seedling emergence from deep planting depths and its relationship with coleoptile length. PLoS ONE 8(9):e73314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sukuru VSP, Kalappanavar IK (2013) Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Res 151:19–26

    Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47(12):1494–1498

    CAS  PubMed  Google Scholar 

  • Muellner AE, Eshonkulov B, Hagenguth J, Pachler B, Michel S, Buerstmayr M, Hole D, Buerstmayr H (2020) Genetic mapping of the common and dwarf bunt resistance gene Bt12 descending from the wheat landrace PI119333. Euphytica 216(5):1–5

    Google Scholar 

  • Mughal I, Shah Y, Tahir S, Haider W, Fayyaz M, Yasmin T, Ilyas M, Farrakh S (2020) Protein quantification and enzyme activity estimation of Pakistani wheat landraces. PLoS ONE 15(9):e0239375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mujeeb-Kazi A, Gorham J, Lopez-Cesati J (1993) Use of wild Triticeae relatives for stress tolerance. Int Crop Sci 1:549–554

    Google Scholar 

  • Munns R (2005) Response of crops to salinity, In: International salinity forum—managing saline soils and water: science, technology and social issues, Riverside Convention Center, California, USA, pp 339–342.

  • Naderi S, Fakheri BA, Maali-Amiri R, Mahdinezhad N (2020) Tolerance responses in wheat landrace Bolani are related to enhanced metabolic adjustments under drought stress. Plant Physiol Biochem 150:244–253

    CAS  PubMed  Google Scholar 

  • Nakhforoosh A, Nagel KA, Fiorani F, Bodner G (2021) Deep soil exploration versus topsoil exploitation: distinctive rooting strategies between wheat landraces and wild relatives. Plant Soil 459(1):397–421

    CAS  PubMed  Google Scholar 

  • Nasserlehaq N, Amamou A, Taghouti M, Annicchiarico P (2011) Adaptation of Moroccan durum wheat varieties from different breeding eras. J Plant Breed Crop Sci 3(2):34–40

    Google Scholar 

  • Nazco R, Villegas D, Ammar K, Pena RJ, Moragues M, Royo C (2012) Can Mediterranean durum wheat landraces contribute to improved grain quality attributes in modern cultivars? Euphytica 185(1):1–7

    Google Scholar 

  • Newton A, Aker T, Baresel JP, Bebeli P (2010) Cereal landraces for sustainable agriculture: a review. Agron Sustain Dev 30:237–269

    Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Bariana HS, McLean M, Shankar MM, Hollaway GJ, Trethowan RM, Lagudah ES, Van Ginkel M (2008) Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Australian J Agric Res 59(5):421–431

    Google Scholar 

  • Olmstead AL, Rhode PW (2002) The red queen and the hard reds: productivity grown in American wheat 1800–1940. J Economic History 62:929–966

    Google Scholar 

  • Ouaja M, Aouini L, Bahri B, Ferjaoui S, Medini M, Marcel TC, Hamza S (2020) Identification of valuable sources of resistance to Zymoseptoria tritici in the Tunisian durum wheat landraces. Eur J Plant Pathol 156(2):647–661

    CAS  Google Scholar 

  • Oyiga BC, Sharma RC, Shen J, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci 202(6):472–485

    CAS  Google Scholar 

  • Ozkan H (2011) The allelic state at the major semi-dwarfing genes in a panel of Turkish bread wheat cultivars and landraces. Plant Genet Resour 9(3):423–429

    Google Scholar 

  • Panfili G, Fratianni A, Irano M (2004) Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem 52:6373–6377

    CAS  PubMed  Google Scholar 

  • Panwar NS, Bhatt KC, Dhariwal OP, Pandey A, Jacob S (2014) Spatial distribution of trait-specific diversity in indian wheat collections. Indian J Plant Genet Resour 27(3):280–286

    Google Scholar 

  • Pascual L, Ruiz M, López-Fernández M, Pérez-Peña H, Benavente E, Vázquez JF, Sansaloni C, Giraldo P (2020) Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genom 21(1):122

    CAS  Google Scholar 

  • Paull JG, Nable RO, Rathjen AJ (1992) Physiological and genetic control of the tolerance of wheat to high concentrations of boron and implications for plant breeding. Plant Soil 146(1):251–260

    CAS  Google Scholar 

  • Pecetti L, Boggini G, Gorham J (1994) Performance of durum wheat landraces in a Mediterranean environment (eastern Sicily). Euphytica 80(3):191–199

    Google Scholar 

  • Peña RJ, Trethowan R, Pfeiffer WH, Van Ginkel M (2002) Quality (End-Use) improvement in Wheat. J Crop Prod 5:1–37

    Google Scholar 

  • Peng JH, Sun D, Nevo E (2011) Domestication evolution, genetics and genomics in wheat. Molecular Breed 28:281–301

    CAS  Google Scholar 

  • Peusha H, Lebedeva T, Priilinn O, Enno T (2002) Genetic analysis of durable powdery mildew resistance in a common wheat line. Hereditas 136(3):201–206

    PubMed  Google Scholar 

  • Phogat BS, Kumar S, Kumari J, Kumar N, Pandey AC, Singh TP, Kumar S, Tyagi RK, Jacob SR, Singh AK, Srinivasan K, Jalli R, Bisht IS, Archak S, Karale M, Sharma P, Yadav M, Mishra P, Kumari G, Joshi U, Aftab T, Gambhir R, Gangopadhyay KK, Rathi YS, Narender P, Sharma RK, Yadav SK, Bhatt KC, Singh B, Prasad TV, Solanki YPS, Singh D, Dutta M, Yadav MC, Rana JC, Bansal KC (2021) Characterization of wheat germplasm conserved in the Indian National Genebank and establishment of a composite core collection. Crop Sci 61:604–620

    CAS  Google Scholar 

  • Pokhrel D, Baral K, Ojha BR, Ghimirey SK, Pandey MP (2013) Screening wheat genotypes for drought tolerance and correlation study among morphophysiological traits. J Agri Env 14:65–77

    Google Scholar 

  • Puterka GJ, Black WC, Steiner WM, Burton RL (1993) Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR maters. Heredity 70:604–618

    CAS  PubMed  Google Scholar 

  • Qamar ZU, Bansal UK, Dong CM, Alfred RL, Bhave M, Bariana HS (2014) Detection of puroindoline (Pina-D1 and Pinb-D1) allelic variation in wheat landraces. J Cereal Sci 60(3):610–616

    CAS  Google Scholar 

  • Qureshi N, Bariana H, Kumran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131(5):1091–1098

    CAS  PubMed  Google Scholar 

  • Raghu BR, Gangwar OP, Bhardwaj SC, Jain SK (2018) Seedling and adult plant resistance to stripe rust in Uttarakhand landraces of wheat. Applied Biol Res 20(3):291–301

    Google Scholar 

  • Ram S, Shoran J, Mishra B (2007) Nap Hal, an Indian landrace of wheat, contains unique genes for better biscuit making quality. J Plant Biochem Biotechnol 16(2):83–86

    CAS  Google Scholar 

  • Rana JC, Dutta M, Rathi RS (2012) Plant genetic resources of the Indian Himalayan region-an overview. Indian J Genet 72(2):115–129

    Google Scholar 

  • Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127(2):317–324

    CAS  PubMed  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110(5):859–864

    CAS  PubMed  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    CAS  PubMed  Google Scholar 

  • Roelfs AP (1988) Resistance to leaf and stem rusts in wheat. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 10–22

    Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108(5):920–930

    CAS  PubMed  Google Scholar 

  • Royo C, Briceño-Félix GA (2011) Spanish wheat pool. In: Bojean AP et al., (ed) The world wheat book. A history of wheat breeding. Lavoisier, pp 121–154.

  • Rufo R, Alvaro F, Royo C, Soriano JM (2019) From landraces to improved cultivars: assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS ONE 14(7):e0219867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero A, Punzo P, Landi S, Costa A, Van Oosten MJ, Grillo S (2017) Improving plant water use efficiency through molecular genetics. Horticulturae 3(2):31

    Google Scholar 

  • Ruisi P, Ingraffia R, Urso V, Giambalvo D, Alfonzo A, Corona O, Settanni L, Frenda AS (2021) Influence of grain quality, semolinas and baker’s yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat. Food Res Int 140:110029

    CAS  PubMed  Google Scholar 

  • Saharan MS, Bhardwaj SC, Chatrath R, Sharma P, Choudhary AK, Gupta RK (2016) Wheat blast disease-An overview. J Wheat Res 8(1):1–5

    Google Scholar 

  • Sareen S, Tyagi BS, Sarial AK, Tiwari V, Sharma I (2014) Trait analysis, diversity, and genotype x environment interaction in some wheat landraces evaluated under drought and heat stress conditions. Chilean J Agric Res 74(2):135–142

    Google Scholar 

  • Shahid M (2019) Barley and wheat landraces of the United Arab Emirates. Tribulus 27:34–39

    Google Scholar 

  • Shahzad A, Ahmad M, Iqbal M, Ahmed I, Ali GM (2012) Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. GMR 11(1):679–692

    CAS  PubMed  Google Scholar 

  • Shamaya NJ, Shavrukov Y, Langridge P, Roy SJ, Tester M (2017) Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biol 17(1):1–8

    Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309

    PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y, Langridge P, Tester M (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed Sci 59(5):671–678

    CAS  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5:291–317

    Google Scholar 

  • Shtaya MJ, Yasin A, Fatoom J, Jebreen M (2019) The effect of salinity on leaf relative water content and chlorophyll content of three wheat (Triticum aestivum L.) landraces from Palestine. Hebron University Research Journal (a) 8:52–65

    Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    CAS  PubMed  Google Scholar 

  • Skovmand B, Reynolds MP, Delacy IH. Mining wheat germplasm collections for yield enhancing traits. In: Bedö Z and Láng L (eds) Wheat in a Global Environment Developments in Plant Breeding, Springer, Dordrecht, pp 761–771.

  • Slavin JL, Jacobs D, Marquart LE, Wiemer K (2001) The role of whole grains in disease prevention. J Am Diet Assoc 101(7):780–785

    CAS  PubMed  Google Scholar 

  • Snijders CHA (1990) Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica 50(2):171–179

    Google Scholar 

  • Sohail Q, Manickavelu A, Ban T (2015) Genetic diversity analysis of Afghan wheat landraces (Triticum aestivum) using DArT markers. Genet Resour Crop Evol 62(8):1147–1157

    CAS  Google Scholar 

  • Srinivasan CC, Thirtle C, Palladino P (2003) Winter wheat in England and Wales, 1923–1995: what do indices of genetic diversity reveal? Plant Genet Resour 1:43–57

    Google Scholar 

  • Starr G, Bredie WL, Hansen ÅS (2013) Sensory profiles of cooked grains from wheat species and varieties. J Cereal Sci 57(3):295–303

    Google Scholar 

  • Strelchenko P, Street K, Mitrofanova O, Hill H, Henry R, Mackay M (2008) Comparative assessment of wheat landraces from AWCC; ICARDA and VIR germplasm collections based on the analysis of SSR markers. Centre for Plant Conservation Genetics Papers, 187.

  • Stubbs RW (1985) Stripe rust. In: Roelfs AP, William RB (eds) Diseases, distribution, epidemiology, and control. Academic Press INC, Orlando, San Diego, New York, London, pp 61–101

    Google Scholar 

  • Stubbs RW, Sanders M, Zeven AC (1984) A recessive resistance gene for yellow rust (Puccinia striiformis West.) in bread wheat (Triticum aestivum L.). Euphytica 33(2):561–562

    Google Scholar 

  • Sun H, Hu J, Song W, Qiu D, Cui L, Wu P, Zhang H, Liu H, Yang L, Qu Y, Li Y (2018) Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet 131(10):2085–2097

    CAS  PubMed  Google Scholar 

  • Taghouti M, Rhrib K, Gaboun F (2014) Exploiting landrace genetic diversity for germplasm enhancement in durum wheat breeding in Morocco. In: Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat, Rome, Italy, pp 27–30.

  • Talas F, Longin F, Miedaner T (2011) Sources of resistance to Fusarium head blight within Syrian durum wheat landraces. Plant Breed 130(3):398–400

    Google Scholar 

  • Tan C, Li G, Cowger C, Carver BF, Xu X (2018) Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theor Appl Genet 131(5):1145–1152

    CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Tehseen MM, Tonk FA, Tosun M, Amri A, Sansaloni CP, Kurtulus E, Yazbek M, Al-Sham’aa K, Ozseven I, Safdar LB, Shehadeh A (2020) Genome-wide association study of resistance to PstS2 and Warrior races of Puccinia striiformis f. sp. tritici (stripe rust) in bread wheat landraces. Plant Genome 14:e20066

    PubMed  Google Scholar 

  • Tesemma T, Tsegaye S, Belay G, Bechere E, Mitiku D (1998) Stability of performance of tetraploid wheat landraces in the Ethiopian highland. Euphytica 102(3):301–308

    Google Scholar 

  • The Hindu Businessline.com.https://www.thehindubusinessline.com/economy/agri-siness/wheat-demand-to-touch-140-mt-by-2050-icar/article9677426.ece (accessed on 25 May 2021).

  • Tiessen H (2008) Phosphorus in the global environment. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Tomás D, Coelho LP, Rodrigues JC, Viegas W, Silva M (2020) Assessment of four portuguese wheat landrace diversity to cope with global warming. Front Plant Sci 11:594977

    PubMed  PubMed Central  Google Scholar 

  • Toor AK, Bansal UK, Bhardwaj S, Badebo A, Bariana HS (2013) Characterization of stem rust resistance in old tetraploid wheat landraces from the Watkins collection. Genet Resour Crop Evol 60(7):2081–2089

    CAS  Google Scholar 

  • Tripathi K, Chauhan SK, Gore PG, Mehta PS, Bisht IS, Bhalla S (2017) Evaluation of wheat landraces of north-western Himalaya against rice weevil, Sitophilus oryzae L. vis-a-vis physical seed parameters. Plant Genet Resour 15(4):321–326

    CAS  Google Scholar 

  • Tsenov N, Kostov K, Todorov I, Panayotov I, Stoeva I, Atanassova D, Mankovsky I, Chamurliysky P (2009) Problems, achievements and prospects in breeding for grain productivity of winter wheat. Field Crops Studies 5(2):261–273

    Google Scholar 

  • Valdez VA, Byrne PF, Lapitan NLV, Peairs FB, Bernardo A, Bai G, Haley SD (2012) Inheritance and genetic mapping of Russian wheat aphid resistance in Iranian wheat landrace accession PI 626580. Crop Sci 52:676–682

    CAS  Google Scholar 

  • Van Ginkel M, Rajaram S (1992) Breeding for durable resistance to diseases in wheat: An international perspective. In: Jacobs Th, Parlevliet JE (eds) Durability of disease resistance. Kluwer Academic Press, Dordrecht, pp 259–272

    Google Scholar 

  • Van Dijk P, Parlevliet JE, Kema GH, Zeven AC, Stubbs RW (1988) Characterization of the durable resistance to yellow rust in old winter wheat cultivars in the Netherlands. Euphytica 38(2):149–158

    Google Scholar 

  • Vechet L, Vojácková M (2005) Use of Detached seedling leaf test to evaluate wheat resistance to Septoria Tritici Blotch. Czech J Genet Plant Breed 41:112–116

    Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP (2016) Unlocking the genetic diversity of Creole wheat’s. Nat Sci Rep 6(1):1–3

    CAS  Google Scholar 

  • Vikram P, Franco J, Burgueño J, Li H, Sehgal D, Saint-Pierre C, Ortiz C, Singh VK, Sneller C, Sharma A, Tattaris M (2021) Strategic use of Iranian bread wheat landrace accessions for genetic improvement: core set formulation and validation. Plant Breed 140(1):87–99

    CAS  Google Scholar 

  • Visioli G, Giannelli G, Agrimonti C, Spina A, Pasini G (2021) Traceability of sicilian durum wheat landraces and historical varieties by high molecular weight glutenins footprint. Agronomy 11(1):143

    CAS  Google Scholar 

  • Wang XF, Zhang ZS, Liu HY, He WL (1996) Evaluation of resistance and slow-mildewing of some wheat varieties on Henan Province. Acta Agric Univ Henanensis 30:160–164

    Google Scholar 

  • Witcombe JR, Joshi A, Joshi KD, Sthapit BR (1996) Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Exp Agric 32(4):445–460

    Google Scholar 

  • World Conservation Monitoring Centre (1992) In Global Biodiversity: Status of the Earth’s Living Resources. Chapman & Hall, London

    Google Scholar 

  • Wu X, Bian Q, Gao Y, Ni X, Sun Y, Xuan Y, Cao Y, Li T (2021) Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. Peer J 9:e10425

    PubMed  PubMed Central  Google Scholar 

  • Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126(5):1397–1403

    CAS  PubMed  Google Scholar 

  • Xiao-dan XU, Jing FENG, Jie-ru FAN, Zhi-yong LIU, Qiang LI, Zhou YL, Zhan-hong MA (2018) Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao. J Integr Agric 17(1):37–45

    Google Scholar 

  • Xu H, Yi Y, Ma P, Qie Y, Fu X, Xu Y, Zhang X, An D (2015) Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet 128(10):2077–2084

    CAS  PubMed  Google Scholar 

  • Xu X, Liu W, Liu Z, Fan J, Zhou Y (2020) Mapping powdery mildew resistance gene pmYBL on chromosome 7B of Chinese Wheat (Triticum aestivum L.) Landrace Youbailan. Plant Dis 104(9):2411–2417

    CAS  PubMed  Google Scholar 

  • Xue F, Wang C, Li C, Duan X, Zhou Y, Zhao N, Wang Y, Ji W (2012) Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet 125(7):1425–1432

    CAS  PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    CAS  PubMed  Google Scholar 

  • Yao F, Long L, Wang Y, Duan L, Zhao X, Jiang Y, Li H, Pu Z, Li W, Jiang Q, Wang J (2020) Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a genome-wide association study. Plant Sci 301:110688

    CAS  PubMed  Google Scholar 

  • Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008) Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology 98(1):87–94

    PubMed  Google Scholar 

  • Yuan FP, Zeng QD, Wu JH, Wang QL, Yang ZJ, Liang BP, Kang ZS, Chen XH, Han DJ (2018) QTL mapping and validation of adult plant resistance to stripe rust in Chinese wheat landrace Humai 15. Front Plant Sci 9:968

    PubMed  PubMed Central  Google Scholar 

  • Zencirci N, Aktan B, Atli A (1994) Genetic relationships of Turkish durum wheat cultivars. Dogˇa Turkish J Agric Fores 18:187–192

    Google Scholar 

  • Zeng X, Wang Y, Li W, Wang C, Liu X, Ji W (2010) Comparison of the genetic diversity between Triticum aestivum ssp. tibetanum Shao and Tibetan wheat landraces (Triticum aestivum L.) by using intron-splice junction primers. Genet Resour Crop Evol 57:1141–1150

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Google Scholar 

  • Zeven AC (2000) Traditional maintenance breeding of landraces: 1. Data Crop Euphytica 116:65–85

    Google Scholar 

  • Zhai WW, Duan XY, Zhou YL, Ma H (2008) Inheritance of resistance to powdery mildew in four Chinese landraces. Plant Prot 34:37–40

    Google Scholar 

  • Zhang H, Feng J, Chang C, Ma C, Zhang X, Yan C, You G, Xiao S (2011) Investigation of main loci contributing to strong seed dormancy of Chinese wheat landrace. J Agric Biotechnol 19(2):270–277

    Google Scholar 

  • Zhang X, Pan H, Bai G (2012) Quantitative trait loci responsible for Fusarium head blight resistance in Chinese landrace Baishanyuehuang. Theor Appl Genet 125(3):495–502

    CAS  PubMed  Google Scholar 

  • Zheng W, Sun D, Pan F (2012) Analysis on quality characters diversity of wheat landraces from Yangtze River Valley. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering. Springer, Berlin, Heidelberg, pp 385–396

    Google Scholar 

  • Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y (2018) Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotech J 16(1):280–291

    CAS  Google Scholar 

  • Zou ZT, Yang WY (1995) Development of wheat germplasm research in Sichuean province. Crop Genet Resour 2:19–20

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Director, ICAR-National Bureau of Plant Genetic Resources, New Delhi for extending infrastructure facility. The authors also wish to thank farmers for maintaining valuable genetic resources.

Funding

Indian Council of Agriculture Research (ICAR), New Delhi is duly acknowledged for funding support. Indian Council of Agricultural Research

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JK, SA; Methodology: JK, SA, RB, SCB, SK; Writing— original draft preparation: SA, JK, SRJ, RB, SCB, SK, CL, PP, OPG, RT; Writing—review and editing: SA, JK, SRJ, AKS, SK, RB, MCY.

Corresponding author

Correspondence to Jyoti Kumari.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, S., Kumari, J., Jacob, S.R. et al. Landraces-potential treasure for sustainable wheat improvement. Genet Resour Crop Evol 69, 499–523 (2022). https://doi.org/10.1007/s10722-021-01310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01310-5

Keywords

Navigation