Skip to main content
Log in

A review on the application of nanofluids in enhanced oil recovery

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Enhanced oil recovery (EOR) has been widely used to recover residual oil after the primary or secondary oil recovery processes. Compared to conventional methods, chemical EOR has demonstrated high oil recovery and low operational costs. Nanofluids have received extensive attention owing to their advantages of low cost, high oil recovery, and wide applicability. In recent years, nanofluids have been widely used in EOR processes. Moreover, several studies have focused on the role of nanofluids in the nanofluid EOR (N-EOR) process. However, the mechanisms related to N-EOR are unclear, and several of the mechanisms established are chaotic and contradictory. This review was conducted by considering heavy oil molecules/particle/surface micromechanics; nanofluid-assisted EOR methods; multiscale, multiphase pore/core displacement experiments; and multiphase flow fluid-solid coupling simulations. Nanofluids can alter the wettability of minerals (particle/surface micromechanics), oil/water interfacial tension (heavy oil molecules/water micromechanics), and structural disjoining pressure (heavy oil molecules/particle/surface micromechanics). They can also cause viscosity reduction (micromechanics of heavy oil molecules). Nanofoam technology, nanoemulsion technology, and injected fluids were used during the EOR process. The mechanism of N-EOR is based on the nanoparticle adsorption effect. Nanoparticles can be adsorbed on mineral surfaces and alter the wettability of minerals from oil-wet to water-wet conditions. Nanoparticles can also be adsorbed on the oil/water surface, which alters the oil/water interfacial tension, resulting in the formation of emulsions. Asphaltenes are also adsorbed on the surface of nanoparticles, which reduces the asphaltene content in heavy oil, resulting in a decrease in the viscosity of oil, which helps in oil recovery. In previous studies, most researchers only focused on the results, and the nanoparticle adsorption properties have been ignored. This review presents the relationship between the adsorption properties of nanoparticles and the N-EOR mechanisms. The nanofluid behaviour during a multiphase core displacement process is also discussed, and the corresponding simulation is analysed. Finally, potential mechanisms and future directions of N-EOR are proposed. The findings of this study can further the understanding of N-EOR mechanisms from the perspective of heavy oil molecules/particle/surface micromechanics, as well as clarify the role of nanofluids in multiphase core displacement experiments and simulations. This review also presents limitations and bottlenecks, guiding researchers to develop methods to synthesise novel nanoparticles and conduct further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng B L, Zhang L C, Luo J H, Wang P M, Ding B, Zeng M X, Cheng Z D. A review of nanomaterials for nanofluid enhanced oil recovery. RSC Advances, 2017, 7(51): 32246–32254

    Article  CAS  Google Scholar 

  2. Muggeridge A, Cockin A, Webb K, Frampton H, Collins I, Moulds T, Salino P. Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions— Royal Society. Mathematical, Physical, and Engineering Sciences, 2006, 2014 (372): 1–25

    Google Scholar 

  3. He L, Li X G, Wu G Z, Lin F, Sui H. Distribution of saturates, aromatics, resins, and asphaltenes fractions in the bituminous layer of Athabasca oil sands. Energy & Fuels, 2013, 27(8): 4677–4683

    Article  CAS  Google Scholar 

  4. Sui H, Ma G Q, Yuan Y P, Li Q F, He L, Wang Y, Li X G. Bitumen-silica interactions in the presence of hydrophilic ionic liquids. Fuel, 2018, 233: 860–866

    Article  CAS  Google Scholar 

  5. He L, Lin F, Li X G, Xu Z H, Sui H. Enhancing bitumen liberation by controlling the interfacial tension and viscosity ratio through solvent addition. Energy & Fuels, 2014, 28(12): 7403–7410

    Article  CAS  Google Scholar 

  6. He L, Lin F, Li X G, Xu Z H, Sui H. Enhancing heavy oil liberation from solid surfaces using biodegradable demulsifiers. Journal of Environmental Chemical Engineering, 2016, 4(2): 1753–1758

    Article  CAS  Google Scholar 

  7. Li X G, Bai Y, Sui H, He L. Understanding desorption of oil fractions from mineral surfaces. Fuel, 2018, 232: 257–266

    Article  CAS  Google Scholar 

  8. Li X G, Bai Y, Sui H, He L. Understanding the liberation of asphaltenes on the muscovite surface. Energy & Fuels, 2017, 31 (2): 1174–1181

    Article  CAS  Google Scholar 

  9. Sui H, Ma G Q, He L, Zhang Z S, Li X G. Recovery of heavy hydrocarbons from Indonesian carbonate asphalt rocks. Part 1: solvent extraction, particle sedimentation, and solvent recycling. Energy & Fuels, 2016, 30(11): 9242–9249

    Article  CAS  Google Scholar 

  10. Li X G, Bian R Z, Wang J Y, Wang X Y, Ma J, Ma G Q, Sui H, He L. Recovery of extra-heavy oil and minerals from carbonate asphalt rocks by reactive extraction. RSC Advances, 2019, 9(25): 14372–14381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Z Q, He C Q, Sui H, He L, Li X G. Recent advances of CO2-responsive materials in separations. Journal of CO2 Utilization, 2019, 30: 79–99

    Article  CAS  Google Scholar 

  12. Ma J, Bian R Z, Ma G Q, Li X G, Sui H, He L. Separation of asphalt from carbonate ore surfaces by reactive extraction: kinetics and modelling. Chemical Engineering Science, 2020, 216: 1–10

    Article  CAS  Google Scholar 

  13. Sui H, Zhang J Q, Yuan Y P, He L, Bai Y, Li X G. Role of binary solvent and ionic liquid in bitumen recovery from oil sands. Canadian Journal of Chemical Engineering, 2016, 94(6): 1191–1196

    Article  CAS  Google Scholar 

  14. Li X G, Yang Z Q, Sui H, Jain A, He L. A hybrid process for oil-solid separation by a novel multifunctional switchable solvent. Fuel, 2018, 221: 303–310

    Article  CAS  Google Scholar 

  15. Li X G, Sun W J, Wu G Z, He L, Li H, Sui H. Ionic liquid enhanced solvent extraction for bitumen recovery from oil sands. Energy & Fuels, 2011, 25(11): 5224–5231

    Article  CAS  Google Scholar 

  16. Zhang Z S, Kang N, Zhou J J, Li X G, He L, Sui H. Novel synthesis of choline-based amino acid ionic liquids and their applications for separating asphalt from carbonate rocks. Nanomaterials (Basel, Switzerland), 2019, 9(4): 1–14

    Google Scholar 

  17. Li X G, He L, Wu G Z, Sun W J, Li H, Sui H. Operational parameters, evaluation methods, and fundamental mechanisms: aspects of nonaqueous extraction of bitumen from oil sands. Energy & Fuels, 2012, 26(6): 3553–3563

    Article  CAS  Google Scholar 

  18. Hou J L, Li X G, Sui H. The optimization and prediction of properties for crude oil blending. Computers & Chemical Engineering, 2015, 76: 21–26

    Article  CAS  Google Scholar 

  19. Zhang N, Yin M F, Wei M Z, Bai B J. Identification of CO2 sequestration opportunities: CO2 miscible flooding guidelines. Fuel, 2019, 241: 459–467

    Article  CAS  Google Scholar 

  20. Al-Otaibi F M, Zhou X M, Kokal S L. Laboratory evaluation of different modes of supercritical carbon dioxide miscible flooding for carbonate rocks. SPE Reservoir Evaluation & Engineering, 2019, 22(1): 137–149

    Article  CAS  Google Scholar 

  21. Han J, Han S, Sung W, Lee Y. Effects of CO2 miscible flooding on oil recovery and the alteration of rock properties in a carbonate reservoir. Journal of CO2 Utilization, 2018, 28: 26–40

    Article  CAS  Google Scholar 

  22. Chen H, Tang H, Zhang X S, Li B W, Li B Z, Shen X. Decreasing in pressure interval of near-miscible flooding by adding intermediate hydrocarbon components. Geosystem Engineering, 2018, 21(3): 151–157

    Article  CAS  Google Scholar 

  23. Ramesh V K, Chintala V, Kumar S. Recent developments, challenges and opportunities for harnessing solar renewable energy for thermal enhanced oil recovery (EOR). Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2019, 43(22): 2878–2895

    Google Scholar 

  24. Menad N A, Noureddine Z, Hemmati-Sarapardeh A, Shamshir-band S. Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: application to thermal enhanced oil recovery processes. Fuel, 2019, 242: 649–663

    Article  CAS  Google Scholar 

  25. Brantson E T, Ju B S, Appau P O, Akwensi P H, Peprah G A, Liu N N, Aphu E S, Boah E A, Borsah A A. Development of hybrid low salinity water polymer flooding numerical reservoir simulator and smart proxy model for chemical enhanced oil recovery (CEOR). Journal of Petroleum Science Engineering, 2020, 187: 1–23

    Article  CAS  Google Scholar 

  26. Jin F Y, Li Q H, He Y, Luo Q, Pu W F. Experimental study on enhanced oil recovery method in the high-temperature and high-salinity channel sand reservoir: combination of profile control and chemical flooding. ACS Omega, 2020, 5(11): 5657–5665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janssen M T G, Mendez F A T, Zitha P L J. Mechanistic modeling of water-alternating-gas injection and foam-assisted chemical flooding for enhanced oil recovery. Industrial & Engineering Chemistry Research, 2020, 59(8): 3606–3616

    Article  CAS  Google Scholar 

  28. Kurnia I, Zhang G Y, Han X, Yu J J. Zwitterionic-anionic surfactant mixture for chemical enhanced oil recovery without alkali. Fuel, 2020, 259: 1–9

    Article  CAS  Google Scholar 

  29. Fakher S, Abdelaal H, Elgahawy Y, Imqam A. A characterization of different alkali chemical agents for alkaline flooding enhanced oil recovery operations: an experimental investigation. Sn Applied Sciences, 2019, 1(12): 1–11

    Article  CAS  Google Scholar 

  30. Gbadamosi A O, Junin R, Manan M A, Agi A, Yusuff A S. An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 2019, 9(3): 171–202

    Article  CAS  Google Scholar 

  31. Alquriaishi A A, Shokir E. Experimental investigation of miscible CO2 flooding. Petroleum Science and Technology, 2011, 29(19): 2005–2016

    Article  CAS  Google Scholar 

  32. Shah A, Fishwick R, Wood J, Leeke G, Rigby S, Greaves M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science, 2010, 3(6): 700–714

    Article  CAS  Google Scholar 

  33. Haghighi O M, Firozjaii A M. An experimental investigation into enhancing oil recovery using combination of new green surfactant with smart water in oil-wet carbonate reservoir. Journal of Petroleum Exploration and Production Technology, 2020, 10(3): 893–901

    Article  CAS  Google Scholar 

  34. Sarmah S, Gogoi S B, Fan X F, Baruah A A. Characterization and identification of the most appropriate nonionic surfactant for enhanced oil recovery. Journal of Petroleum Exploration and Production Technology, 2020, 10(1): 115–123

    Article  CAS  Google Scholar 

  35. Hou B F, Jia R X, Fu M L, Wang Y F, Ma C, Jiang C, Yang B. A novel high temperature tolerant and high salinity resistant gemini surfactant for enhanced oil recovery. Journal of Molecular Liquids, 2019, 296: 1–8

    Article  CAS  Google Scholar 

  36. Jia H, Lian P, Leng X, Han Y G, Wang Q X, Jia K L, Niu X P, Guo M Z, Yan H, Lv K H. Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery. Fuel, 2019, 258: 1–10

    Article  CAS  Google Scholar 

  37. Jia H, Leng X, Hu M, Song Y L, Wu H Y, Lian P, Liang Y P, Zhu Y G, Liu J P, Zhou H T. Systematic investigation of the effects of mixed cationic/anionic surfactants on the interfacial tension of a water/model oil system and their application to enhance crude oil recovery. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 529: 621–627

    Article  CAS  Google Scholar 

  38. Lv K H, Jia K L, Han Y G, Wang Q X, Leng X, Yan H, Jia H. Effects of divalent salts on the interfacial activity of the mixed surfactants at the water/model oil interface. Journal of Surfactants and Detergents, 2019, 22(6): 1487–1494

    Article  CAS  Google Scholar 

  39. Lv K H, Huang P, Liang Y P, Lian P, Yan H, Jia H. The great improvement of the surfactant interfacial activity via the intermolecular interaction with the additional appropriate salt. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 554: 142–148

    Article  CAS  Google Scholar 

  40. Lu Y, Li R, Manica R, Liu Q X, Xu Z H. Enhancing oil-solid and oil-water separation in heavy oil recovery by CO2-responsive surfactants. AIChE Journal. American Institute of Chemical Engineers, 2021, 67(1): 1–12

    Article  CAS  Google Scholar 

  41. Zampieri M F, Ferreira V H S, Quispe C C, Sanches K K M, Moreno R. History matching of experimental polymer flooding for enhanced viscous oil recovery. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 1–16

    Article  CAS  Google Scholar 

  42. Fakher S, Ahdaya M, Imqam A. Hydrolyzed polyacrylamide-fly ash reinforced polymer for chemical enhanced oil recovery: Part 1—injectivity experiments. Fuel, 2020, 260: 1–9

    Article  CAS  Google Scholar 

  43. Afolabi R O, Oluyemi G F, Officer S, Ugwu J O. Hydrophobically associating polymers for enhanced oil recovery—Part B: a review of modelling approach to flow in porous media. Journal of Molecular Liquids, 2019, 293: 1–14

    Article  CAS  Google Scholar 

  44. Tanino Y, Syed A. Enhanced oil recovery by polymer flooding: direct, low-cost visualization in a Hele-Shaw cell. Education Sciences, 2019, 9(3): 1–10

    Article  Google Scholar 

  45. Rincon-Garcia F, Ortiz-Moreno H, Marroquin G, Moreno-Montiel N, Sanchez S, Chacon C, Sanchez-Minero F. Enhanced oil recovery by means of alkali injection. Behavior of the SARA fractions. Petroleum Science and Technology, 2019, 37(21): 2213–2222

    Article  CAS  Google Scholar 

  46. Zhang H Y, Chen G Y, Dong M Z, Zhao S Q, Liang Z W. Evaluation of different factors on enhanced oil recovery of heavy oil using different alkali solutions. Energy & Fuels, 2016, 30(5): 3860–3869

    Article  CAS  Google Scholar 

  47. Xiang B L, Li R, Liu B, Manica R, Liu Q X. Effect of sodium citrate and calcium ions on the spontaneous displacement of heavy oil from quartz surfaces. Journal of Physical Chemistry C, 2020, 124(38): 20991–20997

    Article  CAS  Google Scholar 

  48. Bai T, Grundy J S, Manica R, Li M, Liu Q. Controlling the interaction forces between an air bubble and oil with divalent cations and sodium citrate. Journal of Physical Chemistry C, 2020, 124(32): 17622–17631

    Article  CAS  Google Scholar 

  49. Wei P, Guo K D, Pu W F, Xie Y H, Huang X L, Zhang J L. Aqueous foam stabilized by an in situ hydrophobic polymer via interaction with alkyl polyglycoside for enhancing oil recovery. Energy & Fuels, 2020, 34(2): 1639–1652

    Article  CAS  Google Scholar 

  50. Wei P, Li J T, Xie Y H, Huang X L, Sun L. Alkyl polyglucosides for potential application in oil recovery process: adsorption behavior in sandstones under high temperature and salinity. Journal of Petroleum Science Engineering, 2020, 189: 1–10

    Article  CAS  Google Scholar 

  51. Wei P, Pu W F, Sun L, Pu Y, Li D B, Chen Y. Role of water-soluble polymer on foam-injection process for enhancing oil recovery. Journal of Industrial and Engineering Chemistry, 2018, 65: 280–289

    Article  CAS  Google Scholar 

  52. Wei P, Pu W F, Sun L, Li D B, Ji X D. Alkyl polyglucosides stabilized foam for gas controlling in high-temperature and high-salinity environments. Journal of Industrial and Engineering Chemistry, 2018, 60: 143–150

    Article  CAS  Google Scholar 

  53. Pu W F, Wei P, Sun L, Jin F Y, Wang S. Experimental investigation of viscoelastic polymers for stabilizing foam. Journal of Industrial and Engineering Chemistry, 2017, 47: 360–367

    Article  CAS  Google Scholar 

  54. Wei P, Pu W F, Sun L, Zhou W, Ji X D. Foam stabilized by alkyl polyglycoside and isoamyl alcohol for enhancing oil recovery in the low-permeable reservoir. Journal of Petroleum Science Engineering, 2018, 171: 1269–1278

    Article  CAS  Google Scholar 

  55. Wei P, Pu W F, Sun L, Pu Y, Wang S, Fang Z K. Oil recovery enhancement in low permeable and severe heterogeneous oil reservoirs via gas and foam flooding. Journal of Petroleum Science Engineering, 2018, 163: 340–348

    Article  CAS  Google Scholar 

  56. Wei P, Pu W F, Sun L, Wang B. Research on nitrogen foam for enhancing oil recovery in harsh reservoirs. Journal of Petroleum Science Engineering, 2017, 157: 27–38

    Article  CAS  Google Scholar 

  57. Pu W F, Wei P, Sun L, Pu Y, Chen Y. Investigation on stabilization of foam in the presence of crude oil for improved oil recovery. Journal of Dispersion Science and Technology, 2019, 40(5): 646–656

    Article  CAS  Google Scholar 

  58. Sun L, Wei P, Pu W F, Wang B, Wu Y J, Tan T. The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments. Journal of Petroleum Science Engineering, 2016, 147: 485–494

    Article  CAS  Google Scholar 

  59. Pu W F, Wei P, Sun L, Wang S. Stability, CO2 sensitivity, oil tolerance and displacement efficiency of polymer enhanced foam. RSC Advances, 2017, 7(11): 6251–6258

    Article  CAS  Google Scholar 

  60. Jin F Y, Wei P, Pu W F, Zhang L, Qian Z, Wu G S. Investigation on foam self-generation using in situ carbon dioxide (CO2) for enhancing oil recovery. Journal of Surfactants and Detergents, 2018, 21(3): 399–408

    Article  CAS  Google Scholar 

  61. Lopes L F, Facanha J M F, Maqueira L, Ribeiro F R T, Perez-Gramatges A. Coarsening reduction strategies to stabilize CO2-foam formed with a zwitterionic surfactant in porous media. Journal of Petroleum Science Engineering, 2021, 207: 1–14

    Article  CAS  Google Scholar 

  62. Sagala F, Hethnawi A, Nassar N N. Hydroxyl-functionalized silicate-based nanofluids for enhanced oil recovery. Fuel, 2020, 269: 1–14

    Article  CAS  Google Scholar 

  63. Dai C L, Wang X K, Li Y Y, Lv W J, Zou C W, Gao M W, Zhao M W. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores. Energy & Fuels, 2017, 31(3): 2663–2668

    Article  CAS  Google Scholar 

  64. Joonaki E, Ghanaatian S. The application of nanofluids for enhanced oil recovery: effects on interfacial tension and core-flooding process. Petroleum Science and Technology, 2014, 32 (21): 2599–2607

    Article  CAS  Google Scholar 

  65. Zhou Y X, Wu X, Zhong X, Sun W, Pu H, Zhao J X. Surfactant-augmented functional silica nanoparticle based nanofluid for enhanced oil recovery at high temperature and salinity. ACS Applied Materials & Interfaces, 2019, 11(49): 45763–45775

    Article  CAS  Google Scholar 

  66. Aziz U A, Adnan N, Sohri M Z R, Mohshim D F, Idris A K, Azman M A. Characterization of anionic-nonionic surfactant mixtures for enhanced oil recovery. Journal of Solution Chemistry, 2019, 48(11–12): 1617–1637

    Article  CAS  Google Scholar 

  67. Chen Z J, Mi H, Liu X, Xia K, Ge F, Li X Y, Zhang X D. Preparation and characterization of an anionic gemini surfactant for enhanced oil recovery in a hypersaline reservoir. Journal of Surfactants and Detergents, 2019, 22(6): 1309–1317

    Article  CAS  Google Scholar 

  68. Jia H, Song Y L, Jiang D, Xing L J, Leng X, Zhu Y G, An J B, Dong A D, Jia C Q, Zhou H T. Systematic investigation of the synergistic effects of novel biosurfactant ethoxylated phytosterol-alcohol systems on the interfacial tension of a water/model oil system. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 513: 292–296

    Article  CAS  Google Scholar 

  69. Jia H, Lian P, Liang Y P, Zhu Y G, Huang P, Wu H Y, Leng X, Zhou H T. Systematic investigation of the effects of zwitterionic surface-active ionic liquids on the interfacial tension of a water/crude oil system and their application to enhance crude oil recovery. Energy & Fuels, 2018, 32(1): 154–160

    Article  CAS  Google Scholar 

  70. Jia H, Leng X, Ma A, Huang P, Wu H Y, Liu D X. The improvement of the cationic/anionic surfactant interfacial activity via the selective host-guest recognition. Journal of Molecular Liquids, 2018, 268: 266–272

    Article  CAS  Google Scholar 

  71. Jia H, Lian P, Liang Y P, Han Y G, Wang Q X, Wang S Y, Wang D F, Leng X, Pan W, Lv K H. The effects of surfactant/hydrocarbon interaction on enhanced surfactant interfacial activity in the water/hydrocarbon system. Journal of Molecular Liquids, 2019, 293: 1–8

    Article  CAS  Google Scholar 

  72. Huang P, Jia H, Han Y, Wang Q, Wei X, Luo Q, Dai J, Song J, Yan H, Liu D. Designing novel high-performance shale inhibitors by optimizing the spacer length of imidazolium-based bola-form ionic liquids. Energy & Fuels, 2020, 34(5): 5838–5845

    Article  CAS  Google Scholar 

  73. Barati-Harooni A, Najafi-Marghmaleki A, Tatar A, Mohammadi A H. Experimental and modeling studies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding. Journal of Molecular Liquids, 2016, 220: 1022–1032

    Article  CAS  Google Scholar 

  74. Barati A, Najafi A, Daryasafar A, Nadali P, Moslehi H. Adsorption of a new nonionic surfactant on carbonate minerals in enhanced oil recovery: experimental and modeling study. Chemical Engineering Research & Design, 2016, 105: 55–63

    Article  CAS  Google Scholar 

  75. Kittisrisawai S, Romero-Zeron L B. Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorption onto sand, kaolin, and shale for applications in enhanced oil recovery processes. Part II: dynamic adsorption analysis. Journal of Surfactants and Detergents, 2015, 18(5): 783–795

    Article  CAS  Google Scholar 

  76. Sofla S J D, Sharifi M, Sarapardeh A H. Toward mechanistic understanding of natural surfactant flooding in enhanced oil recovery processes: the role of salinity, surfactant concentration and rock type. Journal of Molecular Liquids, 2016, 222: 632–639

    Article  CAS  Google Scholar 

  77. Ge J J, Wang Y. Surfactant enhanced oil recovery in a high temperature and high salinity carbonate reservoir. Journal of Surfactants and Detergents, 2015, 18(6): 1043–1050

    Article  CAS  Google Scholar 

  78. Machale J, Majumder S K, Ghosh P, Sen T K. Development of a novel biosurfactant for enhanced oil recovery and its influence on the rheological properties of polymer. Fuel, 2019, 257: 1–12

    Article  CAS  Google Scholar 

  79. Ebrahim T, Mohsen V S, Mahdi S M, Esmaeel K T, Saeb A. Performance of low-salinity water flooding for enhanced oil recovery improved by SiO2 nanoparticles. Petroleum Science, 2019, 16(2): 357–365

    Article  CAS  Google Scholar 

  80. Hendraningrat L, Torsaeter O. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems. Applied Nanoscience, 2015, 5(2): 181–199

    Article  CAS  Google Scholar 

  81. Bayat A E, Junin R, Samsuri A, Piroozian A, Hokmabadi M. Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy & Fuels, 2014, 28 (10): 6255–6266

    Article  CAS  Google Scholar 

  82. Nwidee L N, Lebedev M, Barifcani A, Sarmadivaleh M, Iglauer S. Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation. Journal of Colloid and Interface Science, 2017, 504: 334–345

    Article  CAS  PubMed  Google Scholar 

  83. Rostami P, Sharifi M, Aminshahidy B, Fahimpour J. The effect of nanoparticles on wettability alteration for enhanced oil recovery: micromodel experimental studies and CFD simulation. Petroleum Science, 2019, 16(4): 859–873

    Article  CAS  Google Scholar 

  84. Bera A, Belhaj H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—a comprehensive review. Journal of Natural Gas Science and Engineering, 2016, 34: 1284–1309

    Article  CAS  Google Scholar 

  85. Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045–1057

    Article  CAS  Google Scholar 

  86. Agista M N, Guo K, Yu Z X. A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery. Applied Sciences-Basel, 2018, 8(6): 1–29

    Google Scholar 

  87. Feng Y, Zhang Z, Zhao K, Lin S, Li H, Gao X. Photocatalytic nitrogen fixation: oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. Journal of Colloid and Interface Science, 2021, 583: 499–509

    Article  CAS  PubMed  Google Scholar 

  88. Li Y, Zhang X, Liu G H, Gerhardt A, Evans K, Jia A Z, Zhang Z S. Oxygen-deficient titanium dioxide supported cobalt nano-dots as efficient cathode material for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 48: 390–397

    Article  Google Scholar 

  89. Li Z Z, Meng X C, Zhang Z S. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity. Catalysis Science & Technology, 2019, 9(15): 3979–3993

    Article  CAS  Google Scholar 

  90. Meng X C, Zhang Z S. Experimental analysis of a photoreactor packed with Pd-BiVO4-coated glass beads. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(1): 132–139

    Article  CAS  Google Scholar 

  91. Zhou Y X, Wu X, Zhong X, Reagen S, Zhang S J, Sun W, Pu H, Zhao J X. Polymer nanoparticles based nano-fluid for enhanced oil recovery at harsh formation conditions. Fuel, 2020, 267: 1–12

    Article  Google Scholar 

  92. Ivanova A A, Phan C, Barifcani A, Iglauer S, Cheremisin A N. Effect of nanoparticles on viscosity and interfacial tension of aqueous surfactant solutions at high salinity and high temperature. Journal of Surfactants and Detergents, 2020, 23(2): 327–338

    Article  CAS  Google Scholar 

  93. Lima M, do Amparo S Z S, Siqueira E J, Miquita D R, Caliman V, Silva G G. Polyacrylamide copolymer/aminated carbon nanotube-based aqueous nanofluids for application in high temperature and salinity. Journal of Applied Polymer Science, 2018, 135(25): 1–10

    Article  CAS  Google Scholar 

  94. Songolzadeh R, Moghadasi J. Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application. Colloid & Polymer Science, 2017, 295(1): 145–155

    Article  CAS  Google Scholar 

  95. Fossati A, Alho M M, Jacobo S E. Covalent functionalized magnetic nanoparticles for crude oil recovery. Materials Chemistry and Physics, 2019, 238: 1–10

    Article  CAS  Google Scholar 

  96. Zhang Z S, Li H D, Sui H, He L, Li X G. Synthesis and application of hydrophilically-modified Fe3O4 nanoparticles in oil sands separation. RSC Advances, 2018, 8(28): 15813–15824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Olayiwola S O, Dejam M. Interfacial energy for solutions of nanoparticles, surfactants, and electrolytes. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(4): 1–16

    Article  CAS  Google Scholar 

  98. Olayiwola S O, Dejam M. Mathematical modelling of surface tension of nanoparticles in electrolyte solutions. Chemical Engineering Science, 2019, 197: 345–356

    Article  CAS  Google Scholar 

  99. Bollineni P K, Dordzie G, Olayiwola S O, Dejam M. An experimental investigation of the viscosity behavior of solutions of nanoparticles, surfactants, and electrolytes. Physics of Fluids, 2021, 33(2): 1–13

    Article  CAS  Google Scholar 

  100. Olayiwola S O, Dejam M. Experimental study on the viscosity behavior of silica nanofluids with different ions of electrolytes. Industrial & Engineering Chemistry Research, 2020, 59(8): 3575–3583

    Article  CAS  Google Scholar 

  101. Asl H F, Zargar G, Manshad A K, Takassi M A, Ali J A, Keshavarz A. Effect of SiO2 nanoparticles on the performance of L-Arg and L-Cys surfactants for enhanced oil recovery in carbonate porous media. Journal of Molecular Liquids, 2020, 300: 1–12

    Article  CAS  Google Scholar 

  102. Khademolhosseini R, Jafari A, Mousavi S M, Manteghian M, Fakhroueian Z. Synthesis of silica nanoparticles with different morphologies and their effects on enhanced oil recovery. Applied Nanoscience, 2020, 10(4): 1105–1114

    Article  CAS  Google Scholar 

  103. Wu H R, Gao K, Lu Y, Meng Z Y, Gou C B, Li Z, Yang M, Qu M, Liu T J, Hou J R, et al. Silica-based amphiphilic Janus nanofluid with improved interfacial properties for enhanced oil recovery. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 586: 1–10

    Article  CAS  Google Scholar 

  104. Shirazi M, Kord S, Tamsilian Y. Novel smart water-based titania nanofluid for enhanced oil recovery. Journal of Molecular Liquids, 2019, 296: 1–12

    Article  CAS  Google Scholar 

  105. He X, Liu Q, Xu Z. Cellulose-coated magnetic Janus nanoparticles for dewatering of crude oil emulsions. Chemical Engineering Science, 2021, 230: 1–11

    Article  CAS  Google Scholar 

  106. Jia H, Wu H Y, Wu T, Song J Y, Dai J J, Huang W J, Huang P, Yan H, Lv K H. Investigation on the adsorption mechanism and model of didodecyldimethylammonium bromide on ZnO nanoparticles at the oil/water interface. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 585: 1–7

    Article  Google Scholar 

  107. Corredor L M, Husein M M, Maini B B. A review of polymer nanohybrids for oil recovery. Advances in Colloid and Interface Science, 2019, 272: 1–20

    Article  CAS  Google Scholar 

  108. Cheraghian G, Hendraningrat L. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding. International Nano Letters, 2016, 6(1): 1–10

    Article  CAS  Google Scholar 

  109. Cheraghian G, Hendraningrat L. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. International Nano Letters, 2016, 6(2): 129–138

    Article  Google Scholar 

  110. Alnarabiji M S, Husein M M. Application of bare nanoparticle-based nanofluids in enhanced oil recovery. Fuel, 2020, 267: 1–12

    Article  CAS  Google Scholar 

  111. Sun X F, Zhang Y Y, Chen G P, Gai Z Y. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies, 2017, 10(3): 1–33

    Article  Google Scholar 

  112. Negin C, Ali S, Xie Q. Application of nanotechnology for enhancing oil recovery: a review. Petroleum, 2016, 2(4): 324–333

    Article  Google Scholar 

  113. Moghadam A M, Salehi M B. Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 2019, 35(4): 531–563

    Article  CAS  Google Scholar 

  114. Rezk M Y, Allam N K. Impact of nanotechnology on enhanced oil recovery: a mini-review. Industrial & Engineering Chemistry Research, 2019, 58(36): 16287–16295

    Article  CAS  Google Scholar 

  115. Irfan S A, Shafie A, Yahya N, Zainuddin N. Mathematical modeling and simulation of nanoparticle-assisted enhanced oil recovery: a review. Energies, 2019, 12(8): 1–19

    Article  CAS  Google Scholar 

  116. ShamsiJazeyi H. Miller C A, Wong M S, Tour J M, Verduzco R. Polymer-coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, 2014, 131(15): 1–13

    Article  CAS  Google Scholar 

  117. Sun Y X, Yang D H, Shi L C, Wu H Y, Cao Y, He Y M, Xie T T. Properties of nanofluids and their applications in enhanced oil recovery: a comprehensive review. Energy & Fuels, 2020, 34(2): 1202–1218

    Article  CAS  Google Scholar 

  118. Alghamdi A O, Ayirala S C, Al-Otaibi M, Al-Yousef A. Electrokinetically tailored interfaces for chemical enhanced oil recovery in carbonates. Journal of Petroleum Science Engineering, 2021, 207: 1–10

    Article  CAS  Google Scholar 

  119. Kamal M S, Adewunmi A A, Sultan A S, Al-Hamad M F, Mehmood U. Recent advances in nanoparticles enhanced oil recovery: rheology, interfacial tension, oil recovery, and wettability alteration. Journal of Nanomaterials, 2017, 2017: 1–15

    Article  CAS  Google Scholar 

  120. Kazemzadeh Y, Shojaei S, Riazi M, Sharifi M. Review on application of nanoparticles for EOR purposes: a critical review of the opportunities and challenges. Chinese Journal of Chemical Engineering, 2019, 27(2): 237–246

    Article  CAS  Google Scholar 

  121. Tian W B, Wu K L, Gao Y, Chen Z X, Gao Y L, Li J. A critical review of enhanced oil recovery by imbibition: theory and practice. Energy & Fuels, 2021, 35(7): 5643–5670

    Article  CAS  Google Scholar 

  122. Almahfood M, Bai B. The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications. Journal of Petroleum Science Engineering, 2018, 171: 196–210

    Article  CAS  Google Scholar 

  123. Cao Z, Ouyang Z Q, Liu Z Y, Li Y, Ouyang Y X, Lin J H, Xie X Z, Long J Y. Effects of surface oxides and nanostructures on the spontaneous wettability transition of laser-textured copper surfaces. Applied Surface Science, 2021, 560: 1–10

    Article  CAS  Google Scholar 

  124. Teng L, Li Z, Yan Z, Chao Z. Enhanced oil recovery of low permeability cores by SiO2 nanofluid. Energy & Fuels, 2017, 31 (5): 5612–5621

    Article  CAS  Google Scholar 

  125. Bahri A, Khamehchi E. Investigating the effect of wettability on sand production in the presence of smart water and smart nanofluid: an experimental study. Biointerface Research in Applied Chemistry, 2021, 11(5): 13432–13452

    Article  CAS  Google Scholar 

  126. Lv K H, Huang P, Zhou Z S, Wei X, Luo Q, Huang Z M, Yan H, Jia H. Study of Janus amphiphilic graphene oxide as a high-performance shale inhibitor and its inhibition mechanism. Frontiers in Chemistry, 2020, 8: 1–9

    Article  CAS  Google Scholar 

  127. He X, Liu Q X, Xu Z H. Treatment of oily wastewaters using magnetic Janus nanoparticles of asymmetric surface wettability. Journal of Colloid and Interface Science, 2020, 568: 207–220

    Article  CAS  PubMed  Google Scholar 

  128. Morrow N. Evaluation of reservoir wettability and its effect on oil recovery-preface. Journal of Petroleum Science Engineering, 1998, 20(3–4): 107–117

    Google Scholar 

  129. Monfared A D, Ghazanfari M H, Jamialahmadi M, Helalizadeh A. Adsorption of silica nanoparticles onto calcite: equilibrium, kinetic, thermodynamic and DLVO analysis. Chemical Engineering Journal, 2015, 281: 334–344

    Article  CAS  Google Scholar 

  130. Abhishek R, Hamouda A A, Abdulhameed F M. Adsorption kinetics and enhanced oil recovery by silica nanoparticles in sandstone. Petroleum Science and Technology, 2019, 37(12): 1363–1369

    Article  CAS  Google Scholar 

  131. Nwufoh P, Hu Z L, Wen D S, Wang M. Nanoparticle assisted EOR during sand-pack flooding: electrical tomography to assess flow dynamics and oil recovery. Sensors (Basel), 2019, 19(4): 1–17

    Google Scholar 

  132. Abhishek R, Hamouda A A, Murzin I. Adsorption of silica nanoparticles and its synergistic effect on fluid/rock interactions during low salinity flooding in sandstones. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 555: 397–406

    Article  CAS  Google Scholar 

  133. Al-Anssari S, Wang S B, Barifcani A, Lebedev M, Iglauer S. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel, 2017, 206: 34–42

    Article  CAS  Google Scholar 

  134. Li S D, Torsaeter O, Lau H C, Hadia N J, Stubbs L P. The impact of nanoparticle adsorption on transport and wettability alteration in water-wet Berea sandstone: an experimental study. Frontiers in Physics, 2019, 7: 1–12

    Article  CAS  Google Scholar 

  135. Mousavi M A, Hassanajili S, Rahimpour M R. Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs. Applied Surface Science, 2013, 273: 205–214

    Article  CAS  Google Scholar 

  136. Giraldo J, Benjumea P, Lopera S, Cortes F B, Ruiz M A. Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013, 27(7): 3659–3665

    Article  CAS  Google Scholar 

  137. Hendraningrat L, Li S D, Torster O. A coreflood investigation of nanofluid enhanced oil recovery. Journal of Petroleum Science Engineering, 2013, 111: 128–138

    Article  CAS  Google Scholar 

  138. Ehtesabi H, Ahadian M M, Taghikhani V, Ghazanfari M H. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids. Energy & Fuels, 2014, 28(1): 423–430

    Article  CAS  Google Scholar 

  139. Hendraningrat L, Torsaeter O. Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures. Energy & Fuels, 2014, 28(10): 6228–6241

    Article  CAS  Google Scholar 

  140. Naseri S. An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles. Acoustical Society of America Journal, 2014, 95(5): 2863–2863

    Google Scholar 

  141. Esmaeilzadeh P, Sadeghi M T, Fakhroueian Z, Bahramian A, Norouzbeigi R. Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO2, SiO2 and CNT nanofluids containing fluorochemicals, for enhanced gas recovery. Journal of Natural Gas Science and Engineering, 2015, 26: 1294–1305

    Article  CAS  Google Scholar 

  142. Tabar M A, Shafiei Y, Shayesteh M, Monfared A D, Ghazanfari M H. Wettability alteration of calcite rock from gas-repellent to gas-wet using a fluorinated nanofluid: a surface analysis study. Journal of Natural Gas Science and Engineering, 2020, 83: 1–12

    Google Scholar 

  143. Al-Anssari S, Barifcani A, Wang S B, Maxim L, Iglauer S. Wettability alteration of oil-wet carbonate by silica nanofluid. Journal of Colloid and Interface Science, 2016, 461: 435–442

    Article  CAS  PubMed  Google Scholar 

  144. Zhang H, Ramakrishnan T S, Nikolov A, Wasan D. Enhanced oil recovery driven by nanofilm structural disjoining pressure: flooding experiments and microvisualization. Energy & Fuels, 2016, 30 (4): 2771–2779

    Article  CAS  Google Scholar 

  145. Sharma T, Iglauer S, Sangwai J S. Silica nanofluids in an oilfield polymer polyacrylamide: interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery. Industrial & Engineering Chemistry Research, 2016, 55(48): 12387–12397

    Article  CAS  Google Scholar 

  146. Azarshin S, Moghadasi J, Aboosadi Z A. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Exploration & Exploitation, 2017, 35(6): 685–697

    Article  CAS  Google Scholar 

  147. Mohd S. Applications of aluminium oxide and zirconium oxide nanoparticles in altering dolomite rock wettability using different dispersing medium. Chemical Engineering Transactions, 2017, 56: 1339–1344

    Google Scholar 

  148. Yekeen N, Padmanabhan E, Syed A H, Sevoo T, Kanesen K. Synergistic influence of nanoparticles and surfactants on interfacial tension reduction, wettability alteration and stabilization of oil-in-water emulsion. Journal of Petroleum Science Engineering, 2020, 186: 1–25

    Article  CAS  Google Scholar 

  149. Huibers B M J, Pales A R, Bai L Y, Li C Y, Mu L L, Ladner D, Daigle H, Darnault C J G. Wettability alteration of sandstones by silica nanoparticle dispersions in light and heavy crude oil. Journal of Nanoparticle Research, 2017, 19(9): 1–18

    Article  CAS  Google Scholar 

  150. Jang H, Lee W, Lee J. Nanoparticle dispersion with surface-modified silica nanoparticles and its effect on the wettability alteration of carbonate rocks. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 554: 261–271

    Article  CAS  Google Scholar 

  151. Li Y Y, Dai C L, Zhou H D, Wang X K, Lv W J, Zhao M W. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery. Energy & Fuels, 2018, 32(1): 287–293

    Article  CAS  Google Scholar 

  152. Rezvani H, Riazi M, Tabaei M, Kazemzadeh Y, Sharifi M. Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@chitosan nanocomposites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 544: 15–27

    Article  CAS  Google Scholar 

  153. Saha R, Uppaluri R V S, Tiwari P. Silica nanoparticle assisted polymer flooding of heavy crude oil: emulsification, rheology, and wettability alteration characteristics. Industrial & Engineering Chemistry Research, 2018, 57(18): 6364–6376

    Article  CAS  Google Scholar 

  154. Soleimani H, Baig M K, Yahya N, Khodapanah L, Sabet M, Demiral B M R, Burda M. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery. Applied Physics. A, Materials Science & Processing, 2018, 124(2): 1–13

    Article  CAS  Google Scholar 

  155. Ahmadi R, Osfouri S, Azin R. Wettability alteration of carbonate oil reservoir surface using biocompatible nanoparticles. Materials Research Express, 2019, 6(2): 1–9

    Google Scholar 

  156. Gbadamosi A O, Junin R, Manan M A, Agi A, Oseh J O, Usman J. Synergistic application of aluminium oxide nanoparticles and oilfield polyacrylamide for enhanced oil recovery. Journal of Petroleum Science Engineering, 2019, 182: 1–17

    Article  CAS  Google Scholar 

  157. Gbadamosi A O, Junin R, Manan M A, Agi A, Oseh J O, Usman J. Effect of aluminium oxide nanoparticles on oilfield polyacrylamide: rheology, interfacial tension, wettability and oil displacement studies. Journal of Molecular Liquids, 2019, 296: 1–10

    Article  CAS  Google Scholar 

  158. Bahraminejad H, Manshad A K, Riazi M, Ali J A, Sajadi S M, Keshavarz A. CuO/TiO2/PAM as a novel introduced hybrid agent for water-oil interfacial tension and wettability optimization in chemical enhanced oil recovery. Energy & Fuels, 2019, 33(11): 10547–10560

    Article  CAS  Google Scholar 

  159. Ali J A, Kolo K, Manshad A K, Stephen K D. Potential application of low-salinity polymeric-nanofluid in carbonate oil reservoirs: IFT reduction, wettability alteration, rheology and emulsification characteristics. Journal of Molecular Liquids, 2019, 284: 735–747

    Article  CAS  Google Scholar 

  160. Aghajanzadeh M R, Ahmadi P, Sharifi M, Riazi M. Wettability modification of oil-wet carbonate reservoirs using silica-based nanofluid: an experimental approach. Journal of Petroleum Science Engineering, 2019, 178: 700–710

    Article  CAS  Google Scholar 

  161. Keykhosravi A, Simjoo M. Insights into stability of silica nanofluids in brine solution coupled with rock wettability alteration: an enhanced oil recovery study in oil-wet carbonates. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 583: 1–10

    Article  CAS  Google Scholar 

  162. Hou B F, Jia R X, Fu M L, Wang Y F, Jiang C, Yang B, Huang Y Q. Wettability alteration of oil-wet carbonate surface induced by self-dispersing silica nanoparticles: mechanism and monovalent metal ion’s effect. Journal of Molecular Liquids, 2019, 294: 1–9

    Article  CAS  Google Scholar 

  163. Olayiwola S O, Dejam M. Comprehensive experimental study on the effect of silica nanoparticles on the oil recovery during alternating injection with low salinity water and surfactant into carbonate reservoirs. Journal of Molecular Liquids, 2021, 325: 1–9

    Article  CAS  Google Scholar 

  164. Rostami P, Sharifi M, Aminshahidy B, Fahimpour J. Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. Journal of Dispersion Science and Technology, 2020, 41(3): 402–413

    Article  CAS  Google Scholar 

  165. Olayiwola S O, Dejam M. Synergistic interaction of nanoparticles with low salinity water and surfactant during alternating injection into sandstone reservoirs to improve oil recovery and reduce formation damage. Journal of Molecular Liquids, 2020, 317: 1–10

    Article  CAS  Google Scholar 

  166. Mokhtar N A M, Beh H G, Lee K C. The potential application of MnZn ferrite nanofluids for wettability alteration and oil-water interfacial tension reduction. Crystals, 2019, 9(12): 1–11

    Google Scholar 

  167. Wang D, Sun S S, Cui K, Li H L, Gong Y J, Hou J R, Zhang Z Z. Wettability alteration in low-permeability sandstone reservoirs by “SiO2-rhamnolipid” nanofluid. Energy & Fuels, 2019, 33(12): 12170–12181

    Article  CAS  Google Scholar 

  168. Dahkaee K P, Sadeghi M T, Fakhroueian Z, Esmaeilzadeh P. Effect of NiO/SiO2 nanofluids on the ultra interfacial tension reduction between heavy oil and aqueous solution and their use for wettability alteration of carbonate rocks. Journal of Petroleum Science Engineering, 2019, 176: 11–26

    Article  CAS  Google Scholar 

  169. Zargar G, Arabpour T, Manshad A K, Ali J A, Sajadi S M, Keshavarz A, Mohammadi A H. Experimental investigation of the effect of green TiO2/quartz nanocomposite on interfacial tension reduction, wettability alteration, and oil recovery improvement. Fuel, 2020, 263: 1–14

    Article  CAS  Google Scholar 

  170. Ali J, Manshad A K, Imani I, Sajadi S M, Keshavarz A. Greenly synthesized magnetite@SiO2@xanthan nanocomposites and its application in enhanced oil recovery: IFT reduction and wettability alteration. Arabian Journal for Science and Engineering, 2020, 45 (9): 7751–7761

    Article  CAS  Google Scholar 

  171. Safaei A, Esmaeilzadeh F, Sardarian A, Mousavi S M, Wang X P. Experimental investigation of wettability alteration of carbonate gas-condensate reservoirs from oil-wetting to gas-wetting using Fe3O4 nanoparticles coated with poly(vinyl alcohol) (PVA) or hydroxyapatite (HAP). Journal of Petroleum Science Engineering, 2020, 184: 1–22

    Article  CAS  Google Scholar 

  172. Al-Anssari S, Ali M, Alajmi M, Akhondzadeh H, Manshad A K, Kalantariasl A, Iglauer S, Keshavarz A. Synergistic effect of nanoparticles and polymers on the rheological properties of injection fluids: implications for enhanced oil recovery. Energy & Fuels, 2021, 35(7): 6125–6135

    Article  CAS  Google Scholar 

  173. Lu T, Li Z M, Zhou Y, Zhang C. Enhanced oil recovery of low-permeability cores by SiO2 nanofluid. Energy & Fuels, 2017, 31 (5): 5612–5621

    Article  CAS  Google Scholar 

  174. Moghaddam R N, Bahramian A, Fakhroueian Z, Karimi A, Arya S. Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 2015, 29(4): 2111–2119

    Article  CAS  Google Scholar 

  175. Monfared A D, Ghazanfari M H, Jamialahmadi M, Helalizadeh A. The potential application of silica nanoparticles for wettability alteration of oil-wet calcite: a mechanistic study. Energy & Fuels, 2016, 30(5): 3947–3961

    Article  CAS  Google Scholar 

  176. Li S D, Sng A Q, Daniel D, Lau H C, Torsater O, Stubbs P. Visualizing and quantifying wettability alteration by silica nanofluids. ACS Applied Materials & Interfaces, 2021, 13(34): 41182–41189

    Article  CAS  Google Scholar 

  177. Agosta F, Alessandroni M, Antonellini M, Tondi E, Giorgioni M. From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics, 2010, 490(3–4): 197–213

    Article  CAS  Google Scholar 

  178. Aguilera R. Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 2006, 90(5): 807–810

    Article  Google Scholar 

  179. Kumar S, Rao A, Alotaibi M B, Ayirala S C, Yousef A A, Siretanu I, Mugele F. Response of crude oil deposited organic layers to brines of different salinity: an atomic force microscopy study on carbonate surfaces. Fuel, 2021, 302: 1–10

    Article  CAS  Google Scholar 

  180. Ali M, Sahito M F, Jha N K, Arain Z U A, Memon S, Keshavarz A, Iglauer S, Saeedi A, Sarmadivaleh M. Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage. Journal of Colloid and Interface Science, 2020, 559: 304–312

    Article  CAS  PubMed  Google Scholar 

  181. Ni X X, Jiang G C, Liu F, Deng Z Q. Synthesis of an amphiphobic nanofluid with a novel structure and its wettability alteration on low-permeability sandstone reservoirs. Energy & Fuels, 2018, 32 (4): 4747–4753

    Article  CAS  Google Scholar 

  182. Yuan L, Zhang Y Z, Dehghanpour H. A theoretical explanation for wettability alteration by adding nanoparticles in oil-water-tight rock systems. Energy & Fuels, 2021, 35(9): 7787–7798

    Article  CAS  Google Scholar 

  183. Jia H, Leng X, Lian P, Han Y G, Wang Q X, Wang S Y, Sun T N, Liang Y P, Huang P, Lv K H. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface. Soft Matter, 2019, 15(27): 5529–5536

    Article  PubMed  Google Scholar 

  184. Zou J, Liu Y G, Wang Q X, Liu H, Jia H, Lian P. The effects of dynamic noncovalent interaction between surfactants and additional salt on the pH-switchable interfacial tension variations. Journal of Surfactants and Detergents, 2020, 23(1): 169–176

    Article  CAS  Google Scholar 

  185. Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 2003, 100: 503–546

    Article  CAS  Google Scholar 

  186. Saleh N, Sarbu T, Sirk K, Lowry G V, Matyjaszewski K, Tilton R D. Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles. Langmuir, 2005, 21(22): 9873–9878

    Article  CAS  PubMed  Google Scholar 

  187. Lan Q, Yang F, Zhang S Y, Liu S Y, Xu H, Sun D J. Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 302(1–3): 126–135

    Article  CAS  Google Scholar 

  188. Ma H, Luo M X, Dai L L. Influences of surfactant and nanoparticle assembly on effective interfacial tensions. Physical Chemistry Chemical Physics, 2008, 10(16): 2207–2213

    Article  CAS  PubMed  Google Scholar 

  189. Murshed S M S, Tan S H, Nguyen N T. Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. Journal of Physics. D, Applied Physics, 2008, 41(8): 1–6

    Google Scholar 

  190. Ravera F, Ferrari M, Liggieri L, Loglio G, Santini E, Zanobini A. Liquid-liquid interfacial properties of mixed nanoparticle-surfactant systems. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 323(1–3): 99–108

    Article  CAS  Google Scholar 

  191. Vafaei S, Purkayastha A, Jain A, Ramanath G, Borca-Tasciuc T. The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids. Nanotechnology, 2009, 20(18): 1–6

    Article  CAS  Google Scholar 

  192. Vafaei S, Wen D. Spreading of triple line and dynamics of bubble growth inside nanoparticle dispersions on top of a substrate plate. Journal of Colloid and Interface Science, 2011, 362(2): 285–291

    Article  CAS  PubMed  Google Scholar 

  193. Suleimanov B A, Ismailov F S, Veliyev E F. Nanofluid for enhanced oil recovery. Journal of Petroleum Science Engineering, 2011, 78(2): 431–437

    Article  CAS  Google Scholar 

  194. Chen R H, Phuoc T X, Martello D. Surface tension of evaporating nanofluid droplets. International Journal of Heat and Mass Transfer, 2011, 54(11–12): 2459–2466

    Article  CAS  Google Scholar 

  195. Pichot R, Spyropoulos F, Norton I T. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies. Journal of Colloid and Interface Science, 2012, 377(1): 396–405

    Article  CAS  PubMed  Google Scholar 

  196. Roustaei A, Saffarzadeh S, Mohammadi M. An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs. Egyptian Journal of Petroleum, 2013, 22(3): 427–433

    Article  Google Scholar 

  197. Roustaei A, Moghadasi J, Bagherzadeh H, Shahrabadi A. An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration. In: Proceedings of the SPE International Oilfield Nanotechnology Conference 2012. Richardson, TX: Society of Petroleum Engineers, 2012

    Book  Google Scholar 

  198. Saien J, Moghaddamnia F, Bamdadi H. Interfacial tension of methylbenzene-water in the presence of hydrophilic and hydrophobic alumina nanoparticles at different temperatures. Journal of Chemical & Engineering Data, 2013, 58(2): 436–440

    Article  CAS  Google Scholar 

  199. Zargartalebi M, Barati N, Kharrat R. Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: interfacial and adsorption behaviors. Journal of Petroleum Science Engineering, 2014, 119: 36–43

    Article  CAS  Google Scholar 

  200. Zhang H, Nikolov A, Wasan D. Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments. Energy & Fuels, 2014, 28(5): 3002–3009

    Article  CAS  Google Scholar 

  201. Esmaeilzadeh P, Hosseinpour N, Bahramian A, Fakhroueian Z, Arya S. Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air-water and n-heptane-water interfaces. Fluid Phase Equilibria, 2014, 361: 289–295

    Article  CAS  Google Scholar 

  202. Saien J, Pour A R, Asadabadi S. Interfacial tension of the n-hexane-water system under the influence of magnetite nanoparticles and sodium dodecyl sulfate assembly at different temperatures. Journal of Chemical & Engineering Data, 2014, 59(6): 1835–1842

    Article  CAS  Google Scholar 

  203. Sun Q, Li Z M, Li S Y, Jiang L, Wang J Q, Wang P. Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles. Energy & Fuels, 2014, 28(4): 2384–2394

    Article  CAS  Google Scholar 

  204. Moradi B, Pourafshary P, Jalali F, Mohammadi M, Emadi M A. Experimental study of water-based nanofluid alternating gas injection as a novel enhanced oil-recovery method in oil-wet carbonate reservoirs. Journal of Natural Gas Science and Engineering, 2015, 27: 64–73

    Article  CAS  Google Scholar 

  205. Mohajeri M, Hemmati M, Shekarabi A S. An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel. Journal of Petroleum Science Engineering, 2015, 126: 162–173

    Article  CAS  Google Scholar 

  206. Roustaei A, Bagherzadeh H. Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs. Journal of Petroleum Exploration and Production Technology, 2015, 5(1): 27–33

    Article  CAS  Google Scholar 

  207. Saien J, Bahrami M. Understanding the effect of different size silica nanoparticles and SDS surfactant mixtures on interfacial tension of n-hexane-water. Journal of Molecular Liquids, 2016, 224: 158–164

    Article  CAS  Google Scholar 

  208. Biswal N R, Singh J K. Interfacial behavior of nonionic Tween 20 surfactant at oil-water interfaces in the presence of different types of nanoparticles. RSC Advances, 2016, 6(114): 113307–113314

    Article  CAS  Google Scholar 

  209. Vatanparast H, Javadi A, Bahramian A. Silica nanoparticles cationic surfactants interaction in water-oil system. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 521: 221–230

    Article  CAS  Google Scholar 

  210. Choi S K, Son H A, Kim H T, Kim J W. Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles. Energy & Fuels, 2017, 31(8): 7777–7782

    Article  CAS  Google Scholar 

  211. Qi L Q, Song C, Wang T X, Li Q L, Hirasaki G J, Verduzco R. Polymer-coated nanoparticles for reversible emulsification and recovery of heavy oil. Langmuir, 2018, 34(22): 6522–6528

    Article  CAS  PubMed  Google Scholar 

  212. Saien J, Fadaei V. The study of interfacial tension of kerosene-water under influence of CTAB surfactant and different size silica nanoparticles. Journal of Molecular Liquids, 2018, 255: 439–446

    Article  CAS  Google Scholar 

  213. Pantzali M N, Kanaris A G, Antoniadis K D, Mouza A A, Paras S V. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. International Journal of Heat and Fluid Flow, 2009, 30(4): 691–699

    Article  CAS  Google Scholar 

  214. Yekeen N, Padmanabhan E, Idris A K. Synergistic effects of nanoparticles and surfactants on n-decane-water interfacial tension and bulk foam stability at high temperature. Journal of Petroleum Science Engineering, 2019, 179: 814–830

    Article  CAS  Google Scholar 

  215. Vignati E, Piazza R, Lockhart T P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir, 2003, 19(17): 6650–6656

    Article  CAS  Google Scholar 

  216. Moghadam T F, Azizian S. Effect of ZnO nanoparticle and hexadecyltrimethylammonium bromide on the dynamic and equilibrium oil-water interfacial tension. Journal of Physical Chemistry B, 2014, 118(6): 1527–1534

    Article  PubMed  CAS  Google Scholar 

  217. Wen B Y, Sun C Z, Bai B F. Nanoparticle-induced ion-sensitive reduction in decane-water interfacial tension. Physical Chemistry Chemical Physics, 2018, 20(35): 22796–22804

    Article  CAS  PubMed  Google Scholar 

  218. Son H A, Lee T. Enhanced oil recovery with size-dependent interactions of nanoparticles durface-modified by zwitterionic surfactants. Applied Sciences-Basel, 2021, 11(16): 1–13

    Google Scholar 

  219. Ejeh C, Afgan I, AlMansob H, Brantson E, Fekala J, Odiator M, Stanley P, Anumah P, Onyekperem C, Boah E. Computational fluid dynamics for ameliorating oil recovery using silicon-bassed nanofluids and ethanol in oil-wet reservoirs. Energy Reports, 2020, 6: 3023–3035

    Article  Google Scholar 

  220. Li W H, Nan Y L, You Q, Xie Q C, Jin Z H. Effects of salts and silica nanoparticles on oil-brine interfacial properties under hydrocarbon reservoir conditions: a molecular dynamics simulation study. Journal of Molecular Liquids, 2020, 305: 1–8

    Article  Google Scholar 

  221. Wang F C, Wu H A. Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter, 2013, 9 (33): 7974–7980

    Article  CAS  Google Scholar 

  222. Fang T M, Zhang Y N, Yan Y G, Dai C L, Zhang J. Molecular insight into the aggregation and dispersion behavior of modified nanoparticles. Journal of Petroleum Science Engineering, 2020, 191: 1–7

    Article  CAS  Google Scholar 

  223. Li C C, Li Y H, Pu H. Molecular simulation study of interfacial tension reduction and oil detachment in nanochannels by surface-modified silica nanoparticles. Fuel, 2021, 292: 1–9

    Article  Google Scholar 

  224. Yekshaveh J S, Jafari A, Tohidi Z, Salehi R P. Nano-scale simulation of oil-water-nanosilica-rock system: wettability and rheological properties alteration using charged nanoparticles. Journal of Petroleum Science Engineering, 2020, 195: 1–9

    Article  CAS  Google Scholar 

  225. Liang S X, Fang T M, Xiong W, Ding B, Yan Y G, Zhang J. Oil detachment by modified nanoparticles: a molecular dynamics simulation study. Computational Materials Science, 2019, 170: 1–5

    Article  CAS  Google Scholar 

  226. Wang X, Xiao S B, Zhang Z L, He J Y. Transportation of Janus nanoparticles in confined nanochannels: a molecular dynamics simulation. Environmental Science. Nano, 2019, 6(9): 2810–2819

    Article  CAS  Google Scholar 

  227. Song W H, Yao J, Zhang K, Sun H, Yang Y F. The impacts of pore structure and relative humidity on gas transport in shale: a numerical study by the image-based multi-scale pore network model. Transport in Porous Media, 2021, 08: 1–25

    CAS  Google Scholar 

  228. Wasan D T, Nikolov A D. Spreading of nanofluids on solids. Nature, 2003, 423(6936): 156–159

    Article  CAS  PubMed  Google Scholar 

  229. Lim S, Horiuchi H, Nikolov A D, Wasan D. Nanofluids alter the surface wettability of solids. Langmuir, 2015, 31(21): 5827–5835

    Article  CAS  PubMed  Google Scholar 

  230. Nikolov A, Kondiparty K, Wasan D. Nanoparticle self-structuring in a nanofluid film spreading on a solid surface. Langmuir, 2010, 26(11): 7665–7670

    Article  CAS  PubMed  Google Scholar 

  231. Kondiparty K, Nikolov A, Wu S, Wasan D. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments. Langmuir, 2011, 27(7): 3324–3335

    Article  CAS  PubMed  Google Scholar 

  232. Zeng L P, Lu Y H, Al Maskari N S, Chen Y Q, Hossain M M, Saeedi A, Dautriat J, Xie Q. Interpreting micromechanics of fluid-shale interactions with geochemical modelling and disjoining pressure: implications for calcite-rich and quartz-rich shales. Journal of Molecular Liquids, 2020, 319: 1–11

    Article  CAS  Google Scholar 

  233. Wu S, Nikolov A, Wasan D. Cleansing dynamics of oily soil using nanofluids. Journal of Colloid and Interface Science, 2013, 396(6): 293–306

    Article  CAS  PubMed  Google Scholar 

  234. Hu Y Q, Zhao Z Y, Dong H J, Mikhailova M V, Davarpanah A. Hybrid application of nanoparticles and polymer in enhanced oil recovery processes. Polymers, 2021, 13(9): 1–13

    Article  Google Scholar 

  235. Lim S, Zhang H, Wu P, Nikolov A, Wasan D. The dynamic spreading of nanofluids on solid surfaces-role of the nanofilm structural disjoining pressure. Journal of Colloid and Interface Science, 2016, 470: 22–30

    Article  CAS  PubMed  Google Scholar 

  236. Zhang H, Nikolov A, Wasan D. NiKolov N, Wasan D. Dewetting film dynamics inside a capillary using a micellar nanofluid. Langmuir, 2014, 30(31): 9430–3435

    Article  CAS  PubMed  Google Scholar 

  237. Wasan D, Nikolov A, Kondiparty K. The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure. Current Opinion in Colloid & Interface Science, 2011, 16(4): 344–349

    Article  CAS  Google Scholar 

  238. Zhang H, Ramakrishnan T S, Nikolov A, Wasan D. Enhanced oil displacement by nanofluid’s structural disjoining pressure in model fractured porous media. Journal of Colloid and Interface Science, 2018, 511: 48–56

    Article  CAS  PubMed  Google Scholar 

  239. Kondiparty K, Nikolov A D, Wasan D, Liu K L. Dynamic spreading of nanofluids on solids. Part I: experimental. Langmuir, 2012, 28(41): 14618–14623

    Article  CAS  PubMed  Google Scholar 

  240. Liu K L, Kondiparty K, Nikolov A D, Wasan D. Dynamic spreading of nanofluids on solids. Part II: modeling. Langmuir, 2012, 28(47): 16274–16284

    Article  CAS  PubMed  Google Scholar 

  241. Patel H, Shah S, Ahmed R, Ucan S. Effects of nanoparticles and temperature on heavy oil viscosity. Journal of Petroleum Science Engineering, 2018, 167: 819–828

    Article  CAS  Google Scholar 

  242. Taborda E A, Franco C A, Ruiz M A, Alvarado V, Cortes F B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels, 2017, 31 (2): 1329–1338

    Article  CAS  Google Scholar 

  243. Franco-Ariza C A, Guzmán-Calle J D, Cortés F B. Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: effect of the surface acidity. Dyna, 2016, 83(198): 171–179

    Article  CAS  Google Scholar 

  244. Parejas R D, Moura F J, de Avillez R R, Mendes P R D. Effects of Al2O3-NiO, TiO2 and (Mg,Ni)O particles on the viscosity ofheavy oil during aquathermolysis. Colloids and Surfaces. A, Physico-chemical and Engineering Aspects, 2021, 625: 1–13

    Google Scholar 

  245. Liu Y F, Qiu Z S, Zhao C, Nie Z, Zhong H Y, Zhao X, Liu S J, Xing X J. Characterization of bitumen and a novel multiple synergistic method for reducing bitumen viscosity with nanoparticles and surfactants. RSC Advances, 2020, 10(18): 10471–10481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Farajzadeh R, Andrianov A, Krastev R, Hirasaki G J, Rossen W R. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science, 2012, 183: 1–13

    Article  PubMed  CAS  Google Scholar 

  247. Azmi N S M, Abu Bakar N F, Mohd T A T, Azizi A. Molecular dynamics simulation on CO2 foam system with addition of SiO2 nanoparticles at various sodium dodecyl sulfate (SDS) concentrations and elevated temperatures for enhanced oil recovery (EOR) application. Computational Materials Science, 2020, 184: 1–11

    Google Scholar 

  248. Manan M A, Farad S, Piroozian A, Esmail M J A. Effects of nanoparticle types on carbon dioxide foam flooding in enhanced oil recovery. Petroleum Science and Technology, 2015, 33(12): 1286–1294

    Article  CAS  Google Scholar 

  249. Bashir A, Haddad A S, Rafati R. Nanoparticle/polymer-enhanced alpha olefin sulfonate solution for foam generation in the presence of oil phase at high temperature conditions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 582: 1–13

    Article  CAS  Google Scholar 

  250. Liu Q, Qu H Y, Liu S X, Zhang Y S, Zhang S W, Liu J W, Peng B, Luo D. Modified Fe3O4 nanoparticle used for stabilizing foam flooding for enhanced oil recovery. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 605: 1–11

    Article  Google Scholar 

  251. Moradi B, Pourafshary P, Jalali F, Mohammadi M. Effects of nanoparticles on gas production, viscosity reduction, and foam formation during nanofluid alternating gas injection in low and high permeable carbonate reservoirs. Canadian Journal of Chemical Engineering, 2017, 95(3): 479–490

    Article  CAS  Google Scholar 

  252. Yan Y G, Li C Y, Dong Z H, Fang T M, Sun B J, Zhang J. Enhanced oil recovery mechanism of CO2 water-alternating-gas injection in silica nanochannel. Fuel, 2017, 190: 253–259

    Article  CAS  Google Scholar 

  253. Rahmani O. Mobility control in carbon dioxide-enhanced oil recovery process using nanoparticle-stabilized foam for carbonate reservoirs. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 550: 245–255

    Article  CAS  Google Scholar 

  254. Farajzadeh R, Andrianov A, Zitha P L J. Investigation of immiscible and miscible foam for enhancing oil recovery. Industrial & Engineering Chemistry Research, 2010, 49(4): 1910–1919

    Article  CAS  Google Scholar 

  255. Yekeen N, Manan M A, Idris A K, Padmanabhan E, Junin R, Samin A M, Gbadamosi A O, Oguamah I. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery. Journal of Petroleum Science Engineering, 2018, 164: 43–74

    Article  CAS  Google Scholar 

  256. Sun Q, Li Z M, Wang J Q, Li S Y, Li B F, Jiang L, Wang H Y, Lu Q C, Zhang C, Liu W. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2015, 471: 54–64

    Article  CAS  Google Scholar 

  257. Xue Z, Worthen A, Qajar A, Robert I, Bryant S L, Huh C, Prodanovic M, Johnston K P. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes. Journal of Colloid and Interface Science, 2016, 461: 383–395

    Article  CAS  PubMed  Google Scholar 

  258. Rattanaudom P, Shiau B J, Suriyapraphadilok U, Charoensaeng A. Effect of pH on silica nanoparticle-stabilized foam for enhanced oil recovery using carboxylate-based extended surfactants. Journal of Petroleum Science Engineering, 2021, 196: 1–12

    Article  CAS  Google Scholar 

  259. Wang K L, Wang G, Lu C J, Pei C Y, Wang Y. Preparation and investigation of foaming amphiphilic fluorinated nanoparticles for enhanced oil recovery. Materials (Basel), 2017, 10(12): 1403

    Article  CAS  Google Scholar 

  260. Hou J J, Sui H, Du J Z, Sun L Y. Synergistic effect of silica nanofluid and biosurfactant on bitumen recovery from unconventional oil. Journal of Dispersion Science and Technology, 2020, 11: 1–12

    Google Scholar 

  261. Rafati R, Oludara O K, Haddad A S, Hamidi H. Experimental investigation of emulsified oil dispersion on bulk foam stability. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 554: 110–121

    Article  CAS  Google Scholar 

  262. Wang Y, Yue X, Liu K, Zhang B, Ling Q. Effect of permeability on foam mobility and flow resistance distribution: an experimental study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 582: 1–9

    Article  Google Scholar 

  263. Shojaei M J, Meheust Y, Osman A, Grassia P, Shokri N. Combined effects of nanoparticles and surfactants upon foam stability. Chemical Engineering Science, 2021, 238: 1–13

    Article  CAS  Google Scholar 

  264. Wang Y, Wang H B, Zhao X Y, Li C L, Luo J H, Sun S Q, Hu S Q. Effect of hydrophobically modified SiO2 nanoparticles on the stability of water-based SDS foam. Arabian Journal of Chemistry, 2020, 13(9): 6942–6948

    Article  CAS  Google Scholar 

  265. Yekeen N, Idris A K, Manan M A, Samin A M, Risal A R, Kun T X. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chinese Journal of Chemical Engineering, 2017, 25(3): 347–357

    Article  CAS  Google Scholar 

  266. Li S Y, Qiao C Y, Li Z M, Wanambwa S. Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide. Energy & Fuels, 2017, 31(2): 1478–1488

    Article  CAS  Google Scholar 

  267. Rafati R, Haddad A S, Hamidi H. Experimental study on stability and rheological properties of aqueous foam in the presence of reservoir natural solid particles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2016, 509: 19–31

    Article  CAS  Google Scholar 

  268. Horozov T S. Foams and foam films stabilised by solid particles. Current Opinion in Colloid & Interface Science, 2008, 13(3): 134–140

    Article  CAS  Google Scholar 

  269. Kumar S, Mandal A. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Applied Surface Science, 2017, 420: 9–20

    Article  CAS  Google Scholar 

  270. Singh R, Mohanty K K. Foam flow in a layered, heterogeneous porous medium: a visualization study. Fuel, 2017, 197: 58–69

    Article  CAS  Google Scholar 

  271. Rezvani H, Kazemzadeh Y, Sharifi M, Riazi M, Shojaei S. A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: an experimental interfacial study. Journal of Petroleum Science Engineering, 2019, 177: 786–797

    Article  CAS  Google Scholar 

  272. Zhang L L, Jian G Q, Puerto M, Southwick E, Hirasaki G, Biswal S L. Static adsorption of a switchable diamine surfactant on natural and synthetic minerals for high-salinity carbonate reservoirs. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 583: 1–7

    Article  CAS  Google Scholar 

  273. Zhou Y Z, Yin D Y, Chen W L, Liu B, Zhang X R. A comprehensive review of emulsion and its field application for enhanced oil recovery. Energy Science & Engineering, 2019, 7(4): 1046–1058

    Article  CAS  Google Scholar 

  274. Jia H, Leng X, Wang Q X, Han Y G, Wang S Y, Ma A, Guo M Z, Yan H, Lv K H. Controllable emulsion phase behaviour via the selective host-guest recognition of mixed surfactants at the water/octane interface. Chemical Engineering Science, 2019, 202: 75–83

    Article  CAS  Google Scholar 

  275. He X, Liang C, Liu Q X, Xu Z H. Magnetically responsive Janus nanoparticles synthesized using cellulosic materials for enhanced phase separation in oily wastewaters and water-in-crude oil emulsions. Chemical Engineering Journal, 2019, 378: 1–17

    Article  Google Scholar 

  276. Ma J, Li X G, Zhang X Y, Sui H, He L, Wang S Y. A novel oxygen-containing demulsifier for efficient breaking of water-in-oil emulsions. Chemical Engineering Journal, 2020, 385: 1–11

    Article  Google Scholar 

  277. Li X G, Ma J, Bian R Z, Cheng J, Sui H, He L. Novel polyether for efficient demulsification of interfacially active asphaltene-stabilized water-in-oil emulsions. Energy & Fuels, 2020, 34(3): 3591–3600

    Article  CAS  Google Scholar 

  278. Sharma T, Velmurugan N, Patel P, Chon B H, Sangwai J S. Use of oil-in-water pickering emulsion stabilized by nanoparticles in combination with polymer flood for enhanced oil recovery. Petroleum Science and Technology, 2015, 33(17–18): 1595–1604

    Article  CAS  Google Scholar 

  279. Cheng B Y, Li J J, Jiang S, Lu C H, Su H, Yu F W, Jiang H Q. Porescale investigation of microscopic remaining oil variation characteristic in different flow rates using micro-CT. Energies, 2021, 14(11): 1–16

    Article  Google Scholar 

  280. Ali H, Soleimani H, Yahya N, Khodapanah L, Kozlowski G, Sabet M, Demiral B M R, Adebayo L L, Hussain T. Experimental investigation and two-phase flow simulation of oil and nanofluids on micro CT images of sandstone for wettability alteration of the system. Journal of Petroleum Science Engineering, 2021, 204: 1–10

    Article  CAS  Google Scholar 

  281. Abdelfatah E, Pournik M, Ben Shiau B J, Harwell J. Mathematical modeling and simulation of nanoparticles transport in heterogeneous porous media. Journal of Natural Gas Science and Engineering, 2017, 40: 1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the 973 National Basic Research Program of China (Grant No. 2015CB251403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinze Du or Hong Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Du, J., Sui, H. et al. A review on the application of nanofluids in enhanced oil recovery. Front. Chem. Sci. Eng. 16, 1165–1197 (2022). https://doi.org/10.1007/s11705-021-2120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2120-4

Keywords

Navigation