Skip to main content
Log in

Prediction of laminar–turbulent transition on flat plate on the basis of stochastic theory of turbulence and equivalence of measures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this article, on the basis of the stochastic theory of turbulence and the regularity of equivalence of measures, the calculation of the friction coefficient is presented for the laminar–turbulent transition on the flat plate. As a result, the formula for the friction coefficient depending on the turbulence intensity, the scale of turbulence, the velocity-profile index, and the Reynolds number for the laminar–turbulent regime of flow of an incompressible fluid along a smooth flat plate is proposed. For each of the listed parameters included in the equation for the drag coefficient, the relations determining these parameters for each Reynolds number in the region of the laminar–turbulent transition are obtained. It is also determined that the equation for the friction coefficient obtained previously on the basis of stochastic equations for a fully developed turbulent flow can be obtained on the basis of a new dependence for the laminar–turbulent transition with taking into account the initial perturbations in the deterministic motion. The parameters of these perturbations may be determined from the well-known experimental data for the initial turbulence in the flow on the flat plate. Using new dependence of the friction coefficient for the laminar–turbulent transition, it is possible to understand that the differences between the experimental results both for the laminar–turbulent transition and for a fully developed turbulent flow with the same Reynolds number are caused by the difference in the magnitudes of flow fluctuations for concrete experiment instead of only due to the systematic error in the processing of experimental data. The friction coefficient for a laminar–turbulent transition on a smooth flat plate is calculated in the of Reynolds number range of \(5\times 10^{5}\div 2\times 10^{7}\) up to the region of developed turbulent flow. The results of calculations of the friction coefficient show both qualitative and quantitative agreement with the experimental data. So, the law of equivalence of measures and stochastic equations presents both the physical and mathematical essence between interacting deterministic and random states. Thus, “the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales” does not reflect the law of mechanism of interaction of a deterministic state with the fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kolmogorov, A.N.: Mathematical models of turbulent motion of an incompressible viscous fluid. Russ. Math. Surv. 59(1), 3–9 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Landau, L.D.: On the problem of a turbulence. Dokl. Akad. Nauk 44(8), 339–342 (1944)

    MathSciNet  Google Scholar 

  3. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). https://doi.org/10.1175/1520-04697

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Haller, G.: Chaos Near Resonance. Springer, Berlin (1999). https://doi.org/10.1007/978-1-4612-1508-0

    Book  MATH  Google Scholar 

  5. Halmos, P.: Theory of Measures. D. Van Nostrand, New York (1950)

  6. Klimontovich, Y.L.: What are stochastic filtering and stochastic resonance? Physics-Uspekhi 42(1), 37 (1999). https://doi.org/10.1070/PU1999v042n01ABEH000445

  7. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971). https://doi.org/10.1007/bf01646553. (also 23, 343-344)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Feigenbaum, M.: The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 77(1), 65–86 (1980)

    Article  ADS  MATH  Google Scholar 

  9. Landahl, M.T., Mollo-Christensen, E.: Turbulence and Random Processes in Fluid Mechanics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  10. Monin, A.S.: On the nature of turbulence. Usp. Fiz. Nauk 125, 97–122 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. Rabinovich, M.I., Sushchik, M.M.: Coherent structures in turbulent flows. In: Gaponov, A.V., Rabinovich, M.I. (eds.) Nonlinear Waves. Self-Organization, pp. 58–84. Nauka, Moscow (1983). (in Russian)

  12. Zaslavskii, G.M.: Stochasticity of Dynamic Sets. Nauka, Moscow (1984). (in Russian)

  13. Struminskii, V.V.: Origination of turbulence. Dokl. Math. 34(7), 603–605 (1989)

    MathSciNet  Google Scholar 

  14. Samarskii, A.A., Mazhukin, V.I., Matus, P.P., Mikhailik, I.A.: Z/2 conservative schemes for the Korteweg-de Vries Equations. Dokl. Math. 56(3), 909–912 (1997)

    Google Scholar 

  15. Bertolotti, F.P., Joslin, R.D.: Effect of far-field boundary conditions on boundary-layer transition. J. Comput. Phys. 118(2), 392–395 (1995)

    Article  ADS  MATH  Google Scholar 

  16. Mack, L. M. : Boundary-layer linear stability theory. In: AGARD Report No. 709: Special Course on Stability and Transition of Laminar Flow (1984)

  17. Anderson, E., Bai, Z., Bischof, C., Demmel, J., et al.: LAPACK Users Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  18. Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with MATLAB. Cambridge Univ. Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  19. Joyanovic, Mihailo R.: Stochastic receptivity analysis of boundary layer flow. Phys. Rev. Fluids 4, 93901 (2019)

    Article  Google Scholar 

  20. Orzag, S.A., Kells, L.C.: Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96(1), 159–205 (1980). https://doi.org/10.1017/s0022112080002066/

    Article  ADS  MATH  Google Scholar 

  21. Priymak, V.G.: Splitting dynamics of coherent structures in a transitional round-tube flow. Dokl. Phys. 58(10), 457–465 (2013)

    Article  ADS  Google Scholar 

  22. Mayer, C.S.J., von Terzi, D.A., Fasel, H.F.: Direct numerical simulation of investigation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 5–42 (2011)

    Article  ADS  MATH  Google Scholar 

  23. Boiko, A.V., Demyanko, K.V., Nechepurenko, Yu.M.: On computing the location of laminar-turbulent transition in compressible boundary layers. Russ. J. Numer. Anal. Math. Model. 32(1), 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Newton, P.K.: The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 786, 1–4 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, 1–80 (2016). https://doi.org/10.1017/jfm.2016.465

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Manca, L.: Stochastic phase field alpha-Navier–Stokes vesicle-fluid interaction model. J. Math. Anal. Appl. 496, 124805 (2021)

    Article  MATH  Google Scholar 

  27. Memin, E.: Stochastic modelling of turbulent flows for numerical simulations. Fluids 5, 108 (2020)

    Article  ADS  Google Scholar 

  28. Ul’shin, I.I.: Stochastic model of heat transfer in the atmospheric surface layer. Comput. Math. Math. Phys. 60, 459–471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Davidson, P.A.: Turbulence, p. 678. Oxford University Press, Oxford (2004)

    Google Scholar 

  30. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  31. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, vol. 1 and 2. MIT Press, Cambridge (1971)

    Google Scholar 

  32. Schlichting, H.: Boundary-Layer Theory, 6th edn. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  33. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/cbo9780511840531

    Book  MATH  Google Scholar 

  34. Dmitrenko, A.V.: Fundamentals of heat and mass transfer and hydrodynamics of single- phase and two- phase media.Criterial integral statistical methods and direct numerical simulation. (Galleya print: Moscow) (2008). http://search.rsl.ru/ru/catalog/record/6633402

  35. Fursikov, A.V.: Moment theory for Navier–Stokes equations with a random right-hand side. Izv. Ross. Akad. Nauk. 56(6), 1273–1315 (1992)

    Google Scholar 

  36. Vishik, M.I., Chepyzhov, V.V.: Trajectory and global attractors of three-dimensional Navier–Stokes systems. Math. Notes 71(2), 177–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dmitrenko, A.V.: Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 58(6), 228–235 (2013). https://doi.org/10.1134/s1028335813060098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Dmitrenko, A.V.: Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions- Equivalence of Measures. Scientific Discovery. Diploma No. 458 registration No. 583 of December 2 (2013)

  39. Dmitrenko, A.V.: Theory of Equivalent Measures and Sets with Repeating Denumerable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator [in Russian] (Galleya-Print: Moscow) (2013) https://search.rsl.ru/ru/record/01006633402

  40. Dmitrenko, A.V.: Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 8(25), 1101–1111 (2014). https://doi.org/10.12988/astp.2014.49131

    Article  Google Scholar 

  41. Dmitrenko, A.V.: Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 88(6), 1569–1576 (2015). https://doi.org/10.1007/s10891-015-1344-x

    Article  Google Scholar 

  42. Dmitrenko, A.V.: Determination of critical Reynolds numbers for non-isothermal flows using stochastic theories of turbulence and equivalent measures. Heat Transf. Res. 47(1), 41–48 (2016). https://doi.org/10.1615/HeatTransRes

    Article  MathSciNet  Google Scholar 

  43. Dmitrenko, A.V.: The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 43(2), 182–187 (2016). https://doi.org/10.1615/InterJFluidMechRes.v43.i2

    Article  Google Scholar 

  44. Dmitrenko, A.V.: An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. J. Fluid Mech. Res. 43(3), 82–91 (2016). https://doi.org/10.1615/InterJFluidMechRes.v43.i3

    Article  Google Scholar 

  45. Dmitrenko, A.V.: Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Contin. Mech. Thermodyn. 29(1), 1–9 (2017). https://doi.org/10.1007/s00161-016-0514-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Dmitrenko, A.V.: Analytical determination of the heat transfer coefficient for gas, liquid and liquid metal flows in the tube based on stochastic equations and equivalence of measures for continuum. Contin. Mech. Thermodyn. 29(6), 1197–1205 (2017). https://doi.org/10.1007/s00161-017-0566-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Dmitrenko, A.V.: Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 90(6), 1288–1294 (2017). https://doi.org/10.1007/s10891-017-1685-8

    Article  MathSciNet  Google Scholar 

  48. Dmitrenko, A.V.: Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. IOP Conf. Ser. J. Phys. Conf. Ser. 1009, 01201710.1088/1742–6596/1009/1/012017 (2018). https://doi.org/10.1088/1742-6596/1009/1/012017

    Article  Google Scholar 

  49. Dmitrenko, A.V.: The stochastic theory of the turbulence. IOP Conf. Ser. Mater. Sci. Eng. 468, 012021 (2018). https://doi.org/10.1088/1757-899X/468/1/01202

    Article  Google Scholar 

  50. Dmitrenko, A.V.: Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 1250, 012001 (2019). https://doi.org/10.1088/1742-6596/1250/1/012001

    Article  Google Scholar 

  51. Dmitrenko, A.V.: The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth’s atmosphere. J. Phys. Conf. Ser. 1337, 012001 (2019). https://doi.org/10.1088/1742-6596/1291/1/012001

    Article  Google Scholar 

  52. Dmitrenko, A.V.: The correlation dimension of an attarctor determined on the base of the theory of equivalence of measures and stochastic equations for continuum. Contin. Mech. Thermod. 32(1), 63–74 (2020). https://doi.org/10.1007/s00161-019-00784-0

    Article  MathSciNet  Google Scholar 

  53. Dmitrenko, A.V.: Uncertainty relation in turbulent shear flow based on stochastic equations of the continuum and the equivalence of measures Contin. Mech. Thermod. 32(1), 161–171 (2020). https://doi.org/10.1007/s00161-019-00792-0

    Article  MathSciNet  Google Scholar 

  54. Dmitrenko, A.V.: Formation of the turbulence spectrum in the inertial interval on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 93(1), 122–127 (2020). https://doi.org/10.1007/s10891-017-1685-8

    Article  MathSciNet  Google Scholar 

  55. Dmitrenko, A.V.: The Spectrum of the turbulence based on theory of stochastic equations and equivalence of Measures. J. Phys. Conf. Ser. 1705, 012021 (2020)

    Article  Google Scholar 

  56. Dmitrenko, A.V.: Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 1705, 012015 (2020)

    Article  Google Scholar 

  57. Dmitrenko, A.V.: Reynolds analogy based on the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 94, 186–193 (2021). https://doi.org/10.1007/s10891-021-02296-8

    Article  Google Scholar 

  58. Dmitrenko, A.V.: Determination of critical Reynolds number for the flow near a rotating disk on the basis of the theory of stochastic equations and equivalence of measures. Fluids 6(1), 5 (2021). https://doi.org/10.3390/fluids6010005

    Article  ADS  Google Scholar 

  59. Dmitrenko, A.V.: Theoretical solutions for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures. Contin. Mech. Thermodyn. 33, 603–610 (2021). https://doi.org/10.1007/s00161-020-00890-4

    Article  ADS  MathSciNet  Google Scholar 

  60. Dmitrenko, A.V.: Estimation of the critical Rayleigh number as a function of an initial turbulence in the boundary layer of the vertical heated plate. Heat Transf. Res. 12, 1102–1112 (2017). https://doi.org/10.1615/HeatTransRes.2017018750

    Article  Google Scholar 

  61. Dmitrenko, A.V.: Some aspects of the formation of the Spectrum of Atmospheric Turbulence. JP J. Heat Mass Transf. 18(2), 463–476 (2020). https://doi.org/10.17654/HM018020463

    Article  Google Scholar 

  62. Dmitrenko, A.V.: The theoretical solution for the Reynolds analogy based on the stochastic theory of turbulence. JP J. Heat Mass Transf. 18(2), 463–476 (2019). https://doi.org/10.17654/HM018020463

    Article  Google Scholar 

  63. Kolmogorov, A.N.: Local structure of turbulence in incompressible fluid at a very high Reynolds number. Dokl. Acad. Sc. USSR 30, 299–302 (1941)

    ADS  Google Scholar 

  64. Heisenberg, W.: Zur statistischen Theorie der Turbulenz. Zeit. f. Phys. 124, 628–657 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Starikov, F.A., Kochemasov, G.G., Kulikov, S.M., Manachinsky, A.N., Maslov, N.V., Ogorodnikov, A.V., Soldatenkov, I.S.: Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor. Opt. Lett. 32(16), 2291–2293 (2007). https://doi.org/10.1364/OL.32.002291

    Article  ADS  Google Scholar 

  66. Gebers, F.: Schiffbau 9, 435, 475 (1908)

  67. Gebers, F.: Schiffbau 22 (1909)

  68. Schubauer, G.B., Skramstad, H.K.J.: Res. Nat. Bur. Stand. 38, 25 (1947)

    Article  Google Scholar 

  69. Schubauer, G.B., Klebanoff, P.S.: Nat. Advis. Comm. Aero. Wash. Rep. no. 1289 (1955)

  70. Schlichting, H., Klaus, G.: Boundary-Layer Theory, 9th edn. Springer Berlin Heidelberg, Berlin (2017)

    Book  MATH  Google Scholar 

  71. Morkovin, M.V.: Transition from laminar to turbulent shear flow. A review of some recent advances in its understanding. Trans. ASME 80, 1121–1128 (1958)

    Google Scholar 

  72. Schubauer, G.B., Kebanoff, P.S.: Contributions on the mechanics of boundary layer transition. NACA TN 3489 (1955)

  73. Ross, J.A., Barnes, F.H., Burns, J.G., Ross, M.A.: The flat plate boundary layer. Part 3. Comparison of theory and experiment. J. Fluid Mech. 43, 819–832 (1970)

    Article  ADS  MATH  Google Scholar 

  74. Saric, W.S.: Low-speed experiments: requirements for stability measurements. In: Hussaini, M.Y., Voigt, R.G. (eds.) Instability and transition. I (1990)

  75. Brandt, L., Henningson, D.S.: Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229–262 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Westin, K.J.A., Boiko, A.V., Klingmann, B.G.B., Kozlov, V.V., Alfredsson, P.H.: Experiments in a boundary layer subject to free-stream turbulence. Part 1 Boundary layer structure and receptivity. J. Fluid Mech. 281, 193–218 (1994)

    Article  ADS  Google Scholar 

  77. Arnal, D.: Laminar-turbulent transition problems in supersonic and hypersonic flows. Special course on aerothermodynamics of hypersonic vehicles. Neuilly-sur-Seine: AGARD, P. 8.1–8.45, (1989)

  78. Seyfert, C., Krumbein, A.: Comparison of a local correlation-based transition model with an e\(^{\text{N}}\)-method for transition prediction. In: Dillmann, A., Heller, G., Kreplin, H.-P. et al. (eds.) New results in numerical and experimental fluid mechanics VIII: Contribut. to the 17th STAB/DGLR symp., Berlin (Germany), Nov. 9–10, 2010. Springer Berlin Heidelberg, pp. 541–548 (2013)

  79. Seyfert, C., Krumbein, A.: Evaluation of a correlation-based transition model and comparison with the eN method. J. Aircraft. 49(6), 1765–1773 (2012)

    Article  Google Scholar 

  80. Content, C., Houdeville, R.: Application of the—Re_laminar-turbulent transition model in Navier–Stokes computations. Hampton (Paper/AIAA; N 2010-4445) (2010)

  81. Benyahia A., Castillon L., Houdeville R. Prediction of separation-induced transition on highlift low pressure turbine blade. In: Proceedings of the ASME 2011 Turbo Expo: Turbine tech. conf. and exposit, Vancouver (Canada), June 6–10, 2011. N.Y.: Am. Soc. Mech. Eng., vol. 5, pp. 1835–1846 (2011)

  82. Goldstein, M.E.: Effect of free-stream turbulence on boundary layer transition. Philos. Trans. R. Soc. A 372, 20130354 (2014). https://doi.org/10.1098/rsta.2013.0354

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 102, 16–42 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Visbal, M.R., Gaitonde, D.V.: On the use of high-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Mardsen, O., Bogey, C., Bailly, C.: High-order curvilinear simulations of flows around non-cartesian bodies. J. Comput. Acoust. 13(4), 731–748 (2005)

    Article  MATH  Google Scholar 

  86. Tam, C.K.W., Ju, H.: Numerical simulation of the generation of airfoil tones at a moderate Reynolds number. AIAA Paper 2006-2502 (2006)

  87. Dmitrenko, A.V.: Analytical Estimates of Critical Taylor Number for Motion between Rotating Coaxial Cylinders Based on Theory of Stochastic Equations and Equivalence of Measures. Fluids 6, 306 (2021). https://doi.org/10.3390/fluids6090306

    Article  ADS  Google Scholar 

  88. Sandberg, R.D., Jones, L.E., Sandham, N.D., Joseph, P.F.: Direct numerical simulations of noise generated by airfoil trailing edges. AIAA Paper 2007-3469 (2007)

  89. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83, 148–184 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Abalakin, A., Bachwalow, P., Kozubskaya, T.: Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustic problems. Int. J. Aeroacoust. 13(3–4), 207–234 (2014)

    Article  Google Scholar 

  93. Dumbser, M., Kaser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Chan, W.M., Sheriff, K., Pulliam, T.H.: Instabilities of two-dimensional inviscid compressible vortices. J. Fluid Mech. 253, 173–209 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low dissipation high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Desquenes, G., Terracol, M., Sagaut, P.: Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 591, 155–182 (2007)

    Article  ADS  MATH  Google Scholar 

  97. Tutt, B., Charles, R., Roland, S., Noetscher, G.: Development of parachute simulation techniques in LS-DYNA. 11th International LS-DYNA Users Conf. Detroit, pp. 19–25 (2010)

  98. Yunpeng, M., Jinge, Z.: The simulation of canopy fabric air permeability’s influence on the round parachute during the landing process. Int. Industrial Informat. Computer Engineer. Conf. Xi’an. Shaanxi. China. January 10–11, pp. 2156–2159 (2015)

  99. Skubachevskii, A.L.: Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics. Nonlinear Anal. TMA 32(2), 261–278 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  100. Cannarsa, P., Martinez, P.: Vancostenoble J. Global Carleman estimates for degenerate parabolic operators with applications. Mem. Am. Math. Soc. 239(1133), 1–207 (2016)

    Google Scholar 

  101. Cannarsa, P., Tort, J., Yamamoto, M.: Determination of source terms in degenerate parabolic equation. Inverse Probl. 26(10), 105003 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Chuvakhov, P.V., Fedorov, A.V., Obraz, A.O.: Numerical simulation of turbulent spots generated by unstable wave packets in a hypersonic boundary layer. Comput. Fluids 162, 26–38 (2018). https://doi.org/10.1016/j.compfluid.2017.12.001

    Article  MathSciNet  MATH  Google Scholar 

  103. Mayer, C.S.J., Terzi, D.A.V., Fasel, H.F.: Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 5–42 (2011)

    Article  ADS  MATH  Google Scholar 

  104. Mayer, C.S.J., Terzi, D.A.V., Fasel, H.F.: DNS of Complete Transition to Turbulence Via Oblique Breakdown at Mach 3. AIAA 2008-4398 (2008)

  105. Istvan, M.S., Yarusevych, S.: Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Exp. Fluids 59(3), 21 (2018)

    Article  Google Scholar 

  106. Din, Q.H., Egorov, I.V., Fedorov, A.V.: Mach wave effect on laminar–turbulent transition in supersonic flow over a flat plate. Fluid Dyn. 53(5), 690–701 (2018)

    Article  ADS  MATH  Google Scholar 

  107. Egorov, I.V., Nguyen, N.K., Nguyen, T.S., Chuvakhov, P.V.: Modeling of a laminar-turbulent transition using dissipative numerical schemes. J. Comput. Math. Math. Phys. 61(2), 268–280 (2021). https://doi.org/10.31857/S0044466921020083

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the program of increasing the competitive ability of National Research Nuclear University MEPhI (agreement with the Ministry of Education and Science of the Russian Federation of August 27, 2013, Project No.02.a03.21.0005).

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Andreas Öchsner.

This article is dedicated to the memory of Academicians N.A. Anfimov and Ryzhov, Yu. A.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrenko, A.V. Prediction of laminar–turbulent transition on flat plate on the basis of stochastic theory of turbulence and equivalence of measures. Continuum Mech. Thermodyn. 34, 601–615 (2022). https://doi.org/10.1007/s00161-021-01078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01078-0

Keywords

Navigation