Skip to main content
Log in

Modeling of thermal and electrical conductivities by means of a viscoelastic Cosserat continuum

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider a linear theory of a viscoelastic Cosserat continuum of a special type. In doing so, we associate the main variables characterizing the stress–strain state of the continuum with quantities characterizing the electrodynamic and thermal processes. Taking into account the suggested analogues, we interpret equations describing the continuum as equations of thermodynamics and electrodynamics. We identify parameters of our model by comparing the obtained equations with Maxwell’s equations and the hyperbolic heat conduction equation. As a result, we arrive at two three-dimensional telegrapher’s equations: one for temperature and the other for the electric field vector. These equations are novel. They describe electromagnetic and thermal processes and also how they affect each other more accurately compared to the classical theory. In particular, these telegrapher’s equations account for not only the skin effect described in many literature sources on electrodynamics, but also the so-called static skin effects observed in a number of experiments. In contrast to classical electrodynamics, which contains two mutually orthogonal vectors: the electric field vector and the magnetic induction vector, the proposed theory contains three mutually orthogonal vectors: the electric field vector, the magnetic induction vector and the temperature gradient. It agrees with experimental facts discovered by Ettingshausen and Nernst (the Ettingshausen effect and the Nernst–Ettingshausen effect). If thermal component is ignored, the proposed theory reduces to the system of equations, which is a generalization of Maxwell’s equations. This system of equations is novel. It is a three-dimensional analogue of Kirchhoff’s laws for electric circuits, while Maxwell’s equations are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910)

    MATH  Google Scholar 

  2. Crandall, S., Karnopp, D.C., Kurtz, E.F., Jr., Pridmore-Brown, D.C.: Dynamics of Mechanical and Electromechanical Systems. McGraw-Hill, New York (1968)

    Google Scholar 

  3. Kron, G.: Equivalent circuits of the elastic field. ASME. J. Appl. Mech. 11(3), A149–A161 (1944)

    MathSciNet  MATH  Google Scholar 

  4. Kron, G.: Equivalent circuits of compressible and incompressible fluid flow fields. J. Aeronaut. Sci. 12(2), 221–231 (1945)

    MathSciNet  MATH  Google Scholar 

  5. Kron, G.: Electric circuit models of the Schrödinger equation. Phys. Rev. 67, 39–43 (1945)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Kron, G.: Numerical solution of ordinary and partial differential equations by means of equivalent circuits. J. Appl. Phys. 16(3), 172–186 (1945)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Silvio, A., Dell’Isola, F., Porfiri, M.: A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. Int. J. Solids Struct. 39(20), 5295–5324 (2002)

    MATH  Google Scholar 

  8. Ugo, A., Dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

    MATH  Google Scholar 

  9. Darleux, R., Lossouarn, B., Giorgio, I., dell’Isola, F., Deü, J.F.: Electrical analogs of curved beams and application to piezoelectric network damping. Math. Mech. Solids. (2021). https://doi.org/10.1177/10812865211027622

    Article  Google Scholar 

  10. Siegel, D.M.: Innovation in Maxwell’s Electromagnetic Theory: Molecular Vortices, Displacement Current, and Light. Cambrige University Press, New York (1991)

    Google Scholar 

  11. Darrigol, O.: Electrodynamics from Ampère to Einstein. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  12. Chalmers, A.: Maxwell, mechanism, and the nature of electricity. Phys. Perspect. 3, 425–438 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Capria, M.M. (ed.): Physics Before and After Einstein. IOS Press, Amsterdam (2005)

    Google Scholar 

  14. Silva, C.C.: The role of models and analogies in the electromagnetic theory: a historical case study. Sci. Educ. 16, 835–848 (2007)

    Google Scholar 

  15. Pietsch, W.: Hidden underdetermination: a case study in classical electrodynamics. Int. Stud. Philos. Sci. 26(2), 125–151 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Longair, M.: ‘... a paper ... I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’. Philos. Trans. R. Soc. A 373, 20140473 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Jaswon, M.A.: Mechanical interpretation of Maxwell’s equations. Nature 224, 1303–1304 (1969)

    ADS  Google Scholar 

  18. Müller, W.H., Rickert, W., Vilchevskaya, E.N.: Thence the moment of momentum. Z. Angew. Math. Mech. 100(5), e202000117 (2020)

    MathSciNet  Google Scholar 

  19. Kelly, E.M.: Vacuum electromagnetics derived exclusively from the properties of an ideal fluid. Nuovo Cim B 32(1), 117–137 (1976)

    ADS  Google Scholar 

  20. Zhilin, P.A.: Reality and mechanics. In: Proceedings of XXIII Summer School “Nonlinear Oscillations in Mechanical Systems”, St. Petersburg, Russia, pp. 6–49 (1996) (in Russian)

  21. Zhilin, P.A.: Classical and modified electrodynamics. In: Proceedings of International Conference “New Ideas in Natural Sciences”, St. Petersburg. Russia. Part I—Physics, pp. 73–82 (1996)

  22. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 1. Institute for Problems in Mechanical Engineering, St. Petersburg (2006) (in Russian)

  23. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  24. Larson, D.J.: A derivation of Maxwell’s equations from a simple two-component solid-mechanical aether. Phys. Essays. 11(4), 524–530 (1998)

    ADS  MathSciNet  Google Scholar 

  25. Zareski, D.: The elastic interpretation of electrodynamics. Found. Phys. Lett. 14, 447–469 (2001)

    MathSciNet  Google Scholar 

  26. Dmitriyev, V.P.: Electrodynamics and elasticity. Am. J. Phys. 71(9), 952–953 (2003)

    ADS  Google Scholar 

  27. Dmitriyev, V.P.: Mechanical model of the Lorentz force and Coulomb interaction. Cent. Eur. J. Phys. 6(3), 711–716 (2008)

    Google Scholar 

  28. Christov, C.I.: Maxwell–Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum. Math. Comput. Simul. 74(2–3), 93–104 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Christov, C.I.: On the nonlinear continuum mechanics of space and the notion of luminiferous medium. Nonlinear Anal. 71, e2028–e2044 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Christov, C.I.: The concept of a quasi-particle and the non-probabilistic interpretation of wave mechanics. Math. Comput. Simul. 80(1), 91–101 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Christov, C.I.: Frame indifferent formulation of Maxwell’s elastic-fluid model and the rational continuum mechanics of the electromagnetic field. Mech. Res. Commun. 38(4), 334–339 (2011)

    MATH  Google Scholar 

  32. Wang, X.S.: Derivation of Maxwell’s equations based on a continuum mechanical model of vacuum and a singularity model of electric charges. Prog. Phys. 2, 111–120 (2008)

    MATH  Google Scholar 

  33. Lin, T.-W., Lin, H.: Newton’s laws of motion based substantial aether theory for electro-magnetic wave. J. Mech. 30(4), 435–442 (2014)

    Google Scholar 

  34. Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—I. Int. J. Eng. Sci. 2, 359–377 (1964)

    Google Scholar 

  35. Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—II. Int. J. Eng. Sci. 3, 379–398 (1965)

    MathSciNet  Google Scholar 

  36. Treugolov, I.G.: Moment theory of electromagnetic effects in anisotropic solids. Appl. Math. Mech. 53(6), 992–997 (1989)

    Google Scholar 

  37. Grekova, E., Zhilin, P.: Basic equations of Kelvin’s medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Grekova, E.F.: Ferromagnets and Kelvin’s medium: basic equations and wave processes. J. Comput. Acoust. 9(2), 427–446 (2001)

    MATH  Google Scholar 

  39. Ivanova, E.A., Krivtsov, A.M., Zhilin, P.A.: Description of rotational molecular spectra by means of an approach based on rational mechanics. ZAMM. Z. Angew. Math. Mech. 87(2), 139–149 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Ivanova, E.A., Kolpakov, Ya.E.: Piezoeffect in polar materials using moment theory. J. Appl. Mech. Tech. Phys. 54(6), 989–1002 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Ivanova, E.A., Kolpakov, Ya.E.: A description of piezoelectric effect in non-polar materials taking into account the quadrupole moments. Z. Angew. Math. Mech. 96(9), 1033–1048 (2016)

    MathSciNet  Google Scholar 

  42. Tiersten, H.F.: Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys. 5(9), 1298–1318 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier Science Publishers, Oxford (1988)

    MATH  Google Scholar 

  44. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Google Scholar 

  45. Fomethe, A., Maugin, G.A.: Material forces in thermoelastic ferromagnets. Contin. Mech. Thermodyn. Issue 8, 275–292 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012) (in Russian)

  47. Zhilin, P.A.: Construction of a model of an electromagnetic field from the standpoint of rational mechanics. RENSIT 5(1), 77–97 (2013) (in Russian)

  48. Altenbach, H., Indeitsev, D., Ivanova, E., Krvitsov, A.: In memory of Pavel Andreevich Zhilin (1942–2005). ZAMM. Z. Angew. Math. Mech. 87(2), 79–80 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Altenbach, H., Eremeyev, V., Indeitsev, D., Ivanova, E., Krvitsov, A.: On the contributions of Pavel Andreevich Zhilin to Mechanics. Tech. Mech. 29(2), 115–134 (2009)

    Google Scholar 

  50. Altenbach, H., Ivanova, E.A.: Zhilin, Pavel Andreevich. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020) https://doi.org/10.1007/978-3-662-55771-6_147

  51. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)

    MATH  Google Scholar 

  52. Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)

    Google Scholar 

  53. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012)

    Google Scholar 

  54. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Ivanova, E.A.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Vitokhin, E.Y., Ivanova, E.A.: Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity. Contin. Mech. Thermodyn. 29, 1219–1240 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Ivanova, E.A.: Thermal effects by means of two-component Cosserat continuum. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020). https://doi.org/10.1007/978-3-662-55771-6_66

    Chapter  Google Scholar 

  58. Ivanova, E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Ivanova, E.A.: Modeling of electrodynamic processes by means of mechanical analogies. Z. Angew. Math. Mech. 101(4), e202000076 (2021)

    MathSciNet  Google Scholar 

  60. Ivanova, E.A.: On a micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech. 230, 1685–1715 (2019)

    MathSciNet  MATH  Google Scholar 

  61. Ivanova, E.A.: Towards micropolar continuum theory describing some problems of thermo and electrodynamics. In: Altenbach, H., Irschik, H., Matveenko, V.P. (eds.) Contributions to Advanced Dynamics and Continuum Mechanics, pp. 111–129. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-21251-3_8

    Chapter  Google Scholar 

  62. Ivanova, E.A., Matias, D.V.: Coupled problems in thermodynamics. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trends in Material Modeling, pp. 151–172. Springer, Berlin (2019)

    Google Scholar 

  63. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—what are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016)

    Google Scholar 

  64. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics for Materials and Technologies. Advanced Structured Materials, vol. 46, pp. 195–229. Springer, Cham (2017)

    Google Scholar 

  65. Pohl, R.W.: Physical Principles of Electricity and Magnetism. Blackie, Glasgow (1930)

    Google Scholar 

  66. Pohl, R.W.: Elektrizitätslehre. Springer, Berlin (1960)

    MATH  Google Scholar 

  67. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Mainly Electromagnetism and Matter. Addison Wesley Publishing Company, London (1964)

    MATH  Google Scholar 

  68. Abraham, M., Becker, R.: The Classical Theory of Electricity and Magnetism. Blackie & Son Limited, London (1932)

    MATH  Google Scholar 

  69. Reitz, J.R., Milford, F.J.: Foundations of Electromagnetic Theory. Addison-Wesley Publishing Company, London (1960)

    MATH  Google Scholar 

  70. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)

    MATH  Google Scholar 

  71. Sommerfeld, A.: Electrodynamics. Lectures on Theoretical Physics, vol. 3. Academic Press, New York (1964)

    Google Scholar 

  72. Sadiku, M.N.O.: Elements of Electrodynamics. Oxford University Press, New York (2014)

    Google Scholar 

  73. Griffiths, D.J.: Introduction to Electrodynamics. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  74. Hayt, W.H., Buck, J.A.: Engineering Electromagnetics. McGraw-Hill, New York (2012)

    Google Scholar 

  75. Steer, M.: Microwave and RF Design: A System Approach. SciTech Publishing, Raleigh, NC (2010)

    Google Scholar 

  76. Pozar, D.M.: Microwave Engineering. Wiley, Hoboken (2011)

    Google Scholar 

  77. Azbel, M.Y.: ”Static skin effect” for currents in a strong magnetic field and the resistance of metals. Sov. Phys. JETP 17(3), 667–677 (1963)

  78. Panchenko, O.A., Lutsishin, P.P.: Static skin effect in tungsten. J. Exp. Theor. Phys. 30(5), 841–844 (1969)

    ADS  Google Scholar 

  79. Suzuki, M., Tanuma, S.: The static skin effect in bismuth. J. Phys. Soc. Jpn. 44(5), 1539–1546 (1978)

    ADS  Google Scholar 

  80. Bogod, Y.A., Gitsu, D.V., Grozav, A.D.: Static skin effect and acoustoelectric instability in filamentous bismuth single crystals. Sov. Phys. JETP. 63(3), 589–595 (1986)

    ADS  Google Scholar 

  81. Oyamada, K., Peschansky, V.G., Stepanenko, D.I.: Static skin effect at high current densities. Phys. B Condens. Matter. 165–166(Part 1), 277–278 (1990)

    ADS  Google Scholar 

  82. Belikov, A.S., Korenistov, P.S., Marchenkov, V.V.: Bulk and surface conductivity of pure tungsten single crystals under static skin effect. Bull. Perm Univ. Ser. Phys. 41(3), 8–13 (2018)

    Google Scholar 

  83. Chistyakov, V.V., Domozhirova, A.N., Huang, J.C.A., Marchenkov, V.V.: Thickness dependence of conductivity in \(Bi_2 Se_3\) topological insulator. J. Phys. Conf. Ser. 1389, 012051 (2019)

    Google Scholar 

  84. Batdalov, A.B., Cherepanov, A.N., Startsev, V.E., Marchenkov, V.V.: Thermal analogue of the static skin effect in compensated metals in strong magnetic fields. Phys. Met. Metallogr. 75(6), 85–87 (1993) (in Russian)

  85. Batdalov, A.B., Abdulvagidov, S.B., Aliev, A.M.: Magnetothermo-EMF and Wiedemann–Franz law for tungsten single crystals under the conditions of static skin effect. Phys. Solid State 42, 1381–1386 (2000)

    ADS  Google Scholar 

  86. Vovnenko, N.V., Zimin, B.A., Sud’enkov, Y.V.: Nonequilibrium motion of a metal surface exposed to submicrosecond laser pulses. Tech. Phys. 55, 953–957 (2010)

    Google Scholar 

  87. Sud’enkov, Y.V., Pavlishin, A.I.: Nanosecond pressure pulses propagating at anomalously high velocities in metal foils. Tech. Phys. Lett. 29, 491–493 (2003)

    ADS  Google Scholar 

  88. Szekeres, A., Fekete, B.: Continuum mechanics—heat conduction—cognition. Period. Polytech. Eng. Mech. Eng. 59(1), 8–15 (2015)

    Google Scholar 

  89. Tzou, DaYu.: An engineering assessment to the relaxation time in thermal wave propagation. Int. J. Heat Mass Transf. 36(7), 1845–1851 (1993)

    MATH  Google Scholar 

  90. Gembarovic, J., Majernik, V.: Non-Fourier propagation of heat pulses in finite medium. Int. J. Heat Mass Transf. 31(5), 1073–1080 (1988)

    MATH  Google Scholar 

  91. Poletkin, K.V., Gurzadyan, G.G., Shang, J., Kulish, V.: Ultrafast heat transfer on nanoscale in thin gold films. Appl. Phys. B 107, 137–143 (2012)

    ADS  Google Scholar 

  92. Ivanova, E.A., Jatar Montaño, L.E.: A new approach to solving the solid mechanics problems with matter supply. Contin. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-01014-2

    Article  MathSciNet  Google Scholar 

  93. The nature of electric current (Discussion held in the Polytechnical Institute of Leningrad). Electricity. No 3, 127–138 (1930) (in Russian)

  94. The nature of electric current (2nd Discussion, held in the Polytechnical Institute of Leningrad, on January 3rd, 1930). Electricity. No 8, 337–350 (1930) (in Russian)

  95. The nature of electric current (3-rd Discussion, held in the Polytechnical Institute of Leningrad, on the 14-th of March 1930). Electricity. No 10, 425–435 (1930) (in Russian)

  96. Heaviside, O.: Electrical Papers, vol. I, pp. 440–441. Macmillan and Co., London (1892)

    MATH  Google Scholar 

  97. Harmuth, H.F.: Correction of Maxwell’s equations for signals I. IEEE Trans. Electromagn. Compat. 28(4), 250–258 (1986)

    Google Scholar 

  98. Jonsson, B.L.G., Gustafsson, M.: Stored energies in electric and magnetic current densities for small antennas. Proc. R. Soc. A 471, 20140897 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to M. B. Babenkov, Ya. E. Kolpakov, A. M. Krivtsov, V. A. Kuzkin, E. A. Podolskaya and E. N. Vilchevskaya for useful discussions on the paper. The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 dated 17.11.2020).

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.A. Modeling of thermal and electrical conductivities by means of a viscoelastic Cosserat continuum. Continuum Mech. Thermodyn. 34, 555–586 (2022). https://doi.org/10.1007/s00161-021-01071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01071-7

Keywords

Navigation