Skip to main content
Log in

A review on liquid sloshing hydrodynamics

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Liquid sloshing in tanks is a very complex nonlinear free surface fluid flow problem, which must be considered in most of the marine engineering problems such as naval architecture, offshore engineering and so on. Violent liquid sloshing in large containers can damage the tank structure due to the direct liquid impacting action. Sloshing also affects the capsizing process of the liquid cargo ship. Some works on mitigating sloshing by using all kinds of the baffles were thus followed with interests. Oil layers with thinner thickness were shown to reduce the sloshing load of water in tanks. The sloshing characteristics in tanks with different sizes were different, therefore, scaling effect of sloshing should also be considered. Sloshing in a tank can also be used as tuned liquid dampers (TLDs) to dampen wind, wave and flow-induced motions of floating or fixed marine platforms. This paper present an overview on recent advances of liquid sloshing hydrodynamics including sloshing mitigation by using anti-sloshing baffle, layered fluids sloshing, scaling effect of sloshing and TLDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramson H. N., Chu W. H., Kana D. Some studies of nonlinear lateral sloshing in rigid containers [R]. NASA Report, San Antonio, Texas, USA: Southwest Research Institute, 1966.

    Google Scholar 

  2. Faltinsen O. M., Firoozkoohi R., Timokha A. N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen [J]. Journal of Engineering Mathematics, 2011, 70(3): 93–109.

    Article  MathSciNet  MATH  Google Scholar 

  3. Faltinsen O. M., Firoozkoohi R., Timokha A. N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank [J]. Physics of Fluids, 2011, 23(6): 062106.

    Article  Google Scholar 

  4. Yu L., Xue M. A., Zheng J. Experimental study of vertical slat screens effects on reducing shallow water sloshing in a tank under horizontal excitation with a wide frequency range [J]. Ocean Engineering, 2019, 173: 131–141.

    Article  Google Scholar 

  5. Seo M., Jeong W., Cho J. Experiment on sloshing of annular cylindrical tank for development of attitude control devices of floating offshore wind turbines [J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2013, 23(1): 25–33.

    Article  Google Scholar 

  6. Yamamoto K., Kawahara M. Structural oscillation control using tuned liquid damper [J]. Computers and Structures, 1999, 71: 435–446.

    Article  Google Scholar 

  7. Xue M. A., Chen Y. C., Zheng J. H. et al. Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes [J]. Ocean Engineering, 2019, 192: 106582.

    Article  Google Scholar 

  8. Wu C. H., Chen B. F. Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method [J]. Ocean Engineering, 2009, 36(6-7): 500–510.

    Article  Google Scholar 

  9. Lin P. Z. A fixed-grid model for simulation of a moving body in free surface flows [J]. Computers and Fluids, 2007, 36 (3): 549–561.

    Article  MATH  Google Scholar 

  10. Lee S. H., Lee Y. G., Jeong K. L. Numerical simulation of three-dimensional sloshing phenomena using a finite difference method with marker-density scheme [J]. Ocean Engineering, 2011, 38(1): 206–225.

    Article  Google Scholar 

  11. Kargbo O., Xue M. A., Zheng J. H. Multiphase sloshing and interfacial wave interaction with a baffle and a submersed block [J]. Journal of Fluids Engineering, 2019, 141(7): 071301.

    Article  Google Scholar 

  12. Yang C., Niu R., Zhang P. Numerical analyses of liquid slosh by finite volume and lattice boltzmann methods [J]. Aerospace Science and Technology, 2021, 113: 106681.

    Article  Google Scholar 

  13. Cho J. R., Lee H. W. Numerical study on liquid sloshing in baffled tank by nonlinear finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(23-26): 2581–2598.

    Article  MATH  Google Scholar 

  14. Liu J., Zang Q., Ye W. et al. High performence of sloshing problem in cylindrical tank with various barrels by isogeometric boundary element method [J]. Engineering Analysis with Boundary Elements, 2020, 114: 148–165.

    Article  MathSciNet  MATH  Google Scholar 

  15. Strelnikova E., Kriutchenko D., Gnitko V. et al. Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations [J]. Engineering Analysis with Boundary Elements, 2020, 111: 78–87.

    Article  MathSciNet  MATH  Google Scholar 

  16. Green M. D., Zhou Y. P., Dominguez J. M. et al. Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks [J]. Ocean Engineering, 2021, 229: 108925.

    Article  Google Scholar 

  17. Jena D., Biswal K. C. A numerical study of violent sloshing problems with modified MPS method [J]. Journal of Hydrodynamics, 2017, 29(4): 659–669.

    Article  Google Scholar 

  18. Zhang Y. X., Wan D. C., Hino T. Comparative study of MPS method and level-set method for sloshing flows [J]. Journal of Hydrodynamics, 2014, 26(4): 577–585.

    Article  Google Scholar 

  19. Bulian G., Luis Cercos-Pita J. Co-simulation of ship motions and sloshing in tanks [J]. Ocean Engineering, 2018, 152: 353–376.

    Article  Google Scholar 

  20. Zhao W., Yang J., Hu Z. et al. Coupled analysis of nonlinear sloshing and ship motions [J]. Applied Ocean Research, 2014, 47: 85–97.

    Article  Google Scholar 

  21. Kyoung J. H., Hong S. Y., Kim J. W. et al. Finite-element computation of wave impact load due to a violent sloshing [J]. Ocean Engineering, 2005, 32(17-18): 2020–2039.

    Article  Google Scholar 

  22. Ahn Y., Kim Y. Data mining in sloshing experiment database and application of neural network for extreme load prediction [J]. Marine Structures, 2021, 80: 103074.

    Article  Google Scholar 

  23. Ruiz R. O., Lopez-Garcia D., Taflanidis A. Modeling and experimental validation of a new type of tuned liquid damper [J]. Acta Mechanica, 2016, 227(11): 3275–3294.

    Article  Google Scholar 

  24. Nguyen V. K., Do T. D., Nguyen T. V. H. et al. Optimal control of vibration by multiple tuned liquid dampers using taguchi method [J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1563–1572.

    Article  Google Scholar 

  25. Zahrai S. M., Abbasi S., Samali B. et al. Experimental investigation of utilizing TLD with baffles in a scaled down 5-story benchmark building [J]. Journal of Fluids and Structures, 2012, 28: 194–210.

    Article  Google Scholar 

  26. Kargbo O., Xue M. A., Zheng J. H. et al. Multiphase sloshing dynamics of a two-layered fluid and interfacial wave interaction with a porous T-shaped baffle in a tank [J]. Ocean Engineering, 2021, 229: 108664.

    Article  Google Scholar 

  27. Pastoor W., Tveitnes T., Valsgard S. et al. Sloshing in partially filled LNG tanks-An experimental survey [C]. The Offshore Technology Conference, Houston, Texas, USA}, 2004.

    Book  Google Scholar 

  28. Bass R. L., Bowles J. E. B., Trudel R. W. et al. Modeling criteria for scaled LNG sloshing experiments [J]. Journal of Fluids Engineering, 1985, 107: 272–280.

    Article  Google Scholar 

  29. La Rocca M., Sciortino G., Adduce G. et al. Experimental and theoretical investigation on the sloshing of a two-liquid system with free surface [J]. Physics of Fluids, 2005, 17(6): 062101.

    Article  MATH  Google Scholar 

  30. Fan C., Dong X., Li Z. Effect of upper layer immiscible liquids on the water entry phenomena [J]. Ocean Engineering, 2021, 226: 108864.

    Article  Google Scholar 

  31. Chen Y., Xue M. A. Numerical simulation of liquid sloshing with different filling levels using OpenFOAM and experimental validation [J]. Water, 2018, 10(12): 1752.

    Article  Google Scholar 

  32. Ding S., Wang G., Luo Q. Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier [J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 667–679.

    Article  Google Scholar 

  33. Miao G. P., Ishida H., Saitoh T. et al. Analytical solutions for the sloshing loading on circular cylindrical liquid tanks with interior semi-porous barriers [J]. Journal of Hydrodynamics, Ser. B, 2001, 13(2): 32–39.

    Google Scholar 

  34. Hasheminejad S. M., Soleimani H. An analytical solution for free liquid sloshing in a finite-length horizontal cylindrical container filled to an arbitrary depth [J]. Applied Mathematical Modelling, 2017, 48: 338–352.

    Article  MathSciNet  MATH  Google Scholar 

  35. Li Y. L., Zhu R. C., Miao G. P. et al. Simulation of tank sloshing based on OpenFOAM and coupling with ship motions in time domain [J]. Journal of Hydrodynamics, 2012, 24(3): 450–457.

    Article  Google Scholar 

  36. Akyildiz H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank [J]. Journal of Sound and Vibration, 2012, 331(1): 41–52.

    Article  Google Scholar 

  37. Wang W. Y., Zhang Q. Ma Q. L. et al. Sloshing effects under longitudinal excitation in horizontal elliptical cylindrical containers with complex baffles [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2018, 144(2): 04017044.

    Article  Google Scholar 

  38. Chu C. R., Wu Y. R., Wu T. R. et.al. Slosh-induced hydrodynamic force in a water tank with multiple baffles [J]. Ocean Engineering, 2018, 167: 282–292.

    Article  Google Scholar 

  39. Yu L., Xue M. A., Zhu A. Numerical investigation of sloshing in rectangular tank with permeable baffle [J]. Journal of Marine Science and Engineering, 2020, 8(9): 671.

    Article  Google Scholar 

  40. Jin H., Calabrese A., Liu Y. Effects of different damping baffle configurations on the dynamic response of a liquid tank under seismic excitation [J]. Engineering Structures, 2021, 229: 111652.

    Article  Google Scholar 

  41. Praveen K., Nimse P., Meekins M. Seismic sloshing in a horizontal liquid storage tank [J]. Structural Engineering International, 2014, 24(4): 466–473.

    Article  Google Scholar 

  42. Shekari M. R., Hekmatzadeh A. A., Amiri S. M. On the nonlinear dynamic analysis of base-isolated threedimensional rectangular thin-walled steel tanks equipped with vertical baffle [J]. Thin-Walled Structures, 2019, 138: 79–94.

    Article  Google Scholar 

  43. Jiang M. R., Reng B., Wang G. Y. et al. Laboratory investigation of the hydroelastic effect on liquid sloshing in rectangular tanks [J]. Journal of Hydrodynamics, 2014, 26(5): 751–761.

    Article  Google Scholar 

  44. Akyildiz H., Unal E. Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing [J]. Ocean Engineering, 2005, 32(11-12): 1503–1516.

    Article  Google Scholar 

  45. Xue M. A., Zheng J., Lin P. et al. Experimental study on vertical baffles of different configurations in suppressing sloshing pressure [J]. Ocean Engineering, 2017, 136: 178–189.

    Article  Google Scholar 

  46. Panigrahy P. K., Saha U. K., Maity D. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks [J]. Ocean Engineering, 2009, 36(3-4): 213–222.

    Article  Google Scholar 

  47. Yu Y. M., Ning M., Fan S. M. et al. Experimental studies of suppressing effectiveness on sloshing with two perforated floating plates [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 11(1): 285–293.

    Article  Google Scholar 

  48. Ma C., Xiong C., Ma G. Numerical study on suppressing violent transient sloshing with single and double vertical baffles [J]. Ocean Engineering, 2021, 223: 108557.

    Article  Google Scholar 

  49. Jung J. H., Yoon H. S., Lee C. Y. et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank [J]. Ocean Engineering, 2012, 44: 79–89.

    Article  Google Scholar 

  50. Tang Y. Y., Liu Y. D., Chen C. et al. Numerical study of liquid sloshing in 3D LNG tanks with unequal baffle height allocation schemes [J]. Ocean Engineering, 2021, 234: 109181.

    Article  Google Scholar 

  51. Cho J. R., Lee H. W., Ha S. Y. Finite element analysis of resonant sloshing response in 2-D baffled tank [J]. Journal of Sound and Vibration, 2005, 288(4-5): 829–845.

    Article  Google Scholar 

  52. Ebrahimian M., Noorian M. A., Haddadpour H. A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers [J]. Engineering Analysis with Boundary Elements, 2013, 37(2): 383–392.

    Article  MathSciNet  MATH  Google Scholar 

  53. Biswal K. C., Bhattacharyya S. K. Dynamic response of structure coupled with liquid sloshing in a laminated composite cylindrical tank with baffle [J]. Finite Elements in Analysis and Design, 2010, 46(11): 966–981.

    Article  Google Scholar 

  54. Thirunavukkarasu B., Rajagopal T. K. R. Numerical investigation of sloshing in tank with horivert baffles under resonant excitation using CFD code [J]. Thin-Walled Structures, 161: 10751

  55. Xue M. A., Zheng J. H., Lin P. Z. et al. Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank [J]. Journal of Ocean University of China, 2017, 16(4): 661–673.

    Article  Google Scholar 

  56. Hu C., Kamra M. M. An unstructured mesh method for numerical simulation of violent sloshing flows [J]. Journal of Hydrodynamics, 2020, 32(2): 259–266.

    Article  Google Scholar 

  57. Hoch R., Wurm F. H. Numerical and experimental investigation of sloshing under large amplitude roll excitation [J]. Journal of Hydrodynamics, 2021, 33(4): 787–803.

    Article  Google Scholar 

  58. Qin H., Mu L., Tang W. et al. Numerical study on structural response of anti-sloshing baffles of different configurations in a sloshing tank considering hydroelasticity [J]. Ocean Engineering, 2019, 188: 106290.

    Article  Google Scholar 

  59. Goudarzi M. A., Sabbagh-Yazdi S. R., Marx W. Investigation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation [J]. Bulletin of Earthquake Engineering, 2010, 8(4): 1055–1072.

    Article  Google Scholar 

  60. Wang J., Wang C., Liu J. Sloshing reduction in a pitching circular cylindrical container by multiple rigid annular baffles [J]. Ocean Engineering, 2019, 171: 241–249.

    Article  Google Scholar 

  61. Cheng X. D., Liang Y., Wen J. H. Hydroelastic vibrations and liquid sloshing suppression in a rectangular tank with elastic spacer [J]. Journal of Hydrodynamics, 2004, 16(3): 336–340.

    Google Scholar 

  62. Zhu A., Xue M. A., Yuan X. et al. Effect of double-side curved baffle on reducing sloshing in tanks under surge and pitch excitations [J]. Shock and Vibration}, 2021, 6647604.

    Google Scholar 

  63. Hosseinzadeh N., Sangsari M. K., Ferdosiyeh H. T. Shake table study of annular baffles in steel storage tanks as sloshing dependent variable dampers [J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 299–310.

    Article  Google Scholar 

  64. Wang J., Liu J., Wang D. Coupled responses in a partially liquid-filled cylindrical tank with the single flexible baffle under pitching excitations [J]. Shock and Vibration}, 2019, 9854187.

    Google Scholar 

  65. Akyildiz H., Unal N. E., Aksoy H. An experimental investigation of the effects of the ring baffles on liquid sloshing in a rigid cylindrical tank [J]. Ocean Engineering, 2013, 59: 190–197.

    Article  Google Scholar 

  66. Xue M. A., Lin P. Numerical study of ring baffle effects on reducing violent liquid sloshing [J]. Computers and Fluids, 2011, 52: 116–129.

    Article  MathSciNet  MATH  Google Scholar 

  67. Ünal U. O., Bilici G., Akyildiz H. Liquid sloshing in a two-dimensional rectangular tank: A numerical investigation with a T-shaped baffle [J]. Ocean Engineering, 2019, 187: 106183.

    Article  Google Scholar 

  68. Wang W., Guo Z., Peng Y. et al. A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks [J]. Ocean Engineering, 2016, 111: 543–568.

    Article  Google Scholar 

  69. Cho I. H., Choi J. S., Kim M. H. Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle [J]. Ocean Engineering, 2017, 138: 23–34.

    Article  Google Scholar 

  70. Nasar T., Sannasiraj S. A. Sloshing dynamics and performance of porous baffle arrangements in a barge carrying liquid tank [J]. Ocean Engineering, 2019, 183: 24–39.

    Article  Google Scholar 

  71. Poguluri S. K., Cho I. H. Mitigation of liquid sloshing in a rectangular tank due to slotted porous screen [J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2020, 234(3): 686–698.

    Article  Google Scholar 

  72. Xue M. A., Lin P. Z., Zheng J. H. et al. Effects of perforated baffle on reducing sloshing in rectangular tank: Experimental and numerical study [J]. China Ocean Engineering, 2013, 27(5): 615–628.

    Article  Google Scholar 

  73. Zhao H. E., Zhu R. C., Miao G. P. The simulation and analysis of tank sloshing with porosity girder by multi-domain boundary element method [J]. Journal of Hydrodynamics, 2010, 22(4): 546–553.

    Article  Google Scholar 

  74. Geng B. L., Wang R. Q., Ning D. Z. The wave absorption efficiency of multi-layer vertical perforated thin plates [J]. Journal of Hydrodynamics, 2018, 30(5): 898–907.

    Article  Google Scholar 

  75. Zheng J., Kargbo O., Xue M. A. et al. Numerical study of the interfacial sloshing wave interaction with a porous bottom layer in a partially filled rectangular tank [J]. Ocean Engineering, 2020, 217: 107990.

    Article  Google Scholar 

  76. Xue M. A., Jiang Z., Lin P. Z. et al. Sloshing dynamics in cylindrical tank with porous layer under harmonic and seismic excitations [J]. Ocean Engineering, 2021, 235: 109373.

    Article  Google Scholar 

  77. Xue M. A., Jiang Z., Hu Y. A. et al. Numerical study of porous material layer effects on mitigating sloshing in a membrane LNG tank [J]. Ocean Engineering, 2020, 218: 108240.

    Article  Google Scholar 

  78. Jin H., Liu Y., Li H. Experimental study on sloshing in a tank with an inner horizontal perforated plate [J]. Ocean Engineering, 2014, 82: 75–84.

    Article  Google Scholar 

  79. Xue M. A., Zheng J., Lin P. Numerical simulation of sloshing phenomena in cubic tank with multiple baffles [J]. Journal of Applied Mathematics}, 2012, 245702.

    MATH  Google Scholar 

  80. Cheng X. D., Hu M. Z., Wen J. H. The equivalent mechanical models of liquid sloshing in a spherical tank with spacer under low gravity [J]. Journal of Hydrodynamics, 2005, 17(1): 110–116.

    MATH  Google Scholar 

  81. Sinai Y. L. Fundamental sloshing frequencies of stratified two-fluid systems in closed prismatic tanks [J]. International Journal of Heat and Fluid Flow, 1985, 6(2):142–144.

    Article  Google Scholar 

  82. Tang Y., Ma D. C., Chang Y. W. Sloshing response in a tank containing two liquids [C]. American Society of Mechanical Engineers (ASME) Pressure Vessels and Piping Conference, San Diego, USA, 1991.

    Google Scholar 

  83. Tang Y. Laterally excited flexible tanks with nonuniform density liquid [J]. Journal of Engineering Mechanics, 1996, 122(10): 948–956.

    Article  Google Scholar 

  84. Veletsos A. S., Shivakumar P. Sloshing response of layered liquids in rigid tanks [J]. Earthquake Engineering and Structural Dynamics, 1993, 22(9): 801–821.

    Article  Google Scholar 

  85. Valentine D. T. Numerical investigation of two-dimensional sloshing: Nonlinear internal waves [J]. Journal of Offshore Mechanics & Arctic Engineering, 2005, 127(4): 300–305.

    Article  MathSciNet  Google Scholar 

  86. Ambrosi D. Hamiltonian formulation for surface waves in a layered fluid [J]. Wave Motion, 2000, 31(1): 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  87. Grue J., Jensen A., Russ P. O. et al. Properties of largeamplitude internal waves [J]. Journal of Fluid Mechanics, 1999, 380: 257–278.

    Article  MathSciNet  Google Scholar 

  88. Audiffren C., Marcer R., Molin B. et al. Experimental and numerical study of liquid sloshing in a rectangular tank with three fluids [C]. The Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012.

    Google Scholar 

  89. La Rocca M., Sciortino G., Boniforti M. A. Interfacial gravity waves in a two-fluid system [J]. Fluid Dynamics Research, 2002, 30(1): 31–66.

    Article  MathSciNet  MATH  Google Scholar 

  90. Wu G. The sloshing of stratified liquid in a two-dimensional rectangular tank [J]. Science China Physics Mechanics and Astronomy, 2011, 54(1): 2–9.

    Article  Google Scholar 

  91. Cheng S., Xu R., Jin W. et al. Experimental study on sloshing characteristics in a pool with stratified liquids [J]. Annals of Nuclear Energy, 2020, 138: 107184.

    Article  Google Scholar 

  92. Xue M. A., Kargbo O., Zheng J. Seiche oscillations of layered fluids in a closed rectangular tank with wave damping mechanism [J]. Ocean Engineering, 2020, 196: 106842.

    Article  Google Scholar 

  93. Sciortino G., Adduce C., La Rocca M. Sloshing of a layered fluid with a free surface as a Hamiltonian system [J]. Physics of Fluids, 2009, 21(5): 052102.

    Article  MATH  Google Scholar 

  94. Wang Z., Zou L., Zong Z. Three-dimensional sloshing of stratified liquid in a cylindrical tank [J]. Ocean Engineering, 2016, 119: 58–66.

    Article  Google Scholar 

  95. Kim K. S., Kim M. H., Park J. C. Development of moving particle simulation method for multiliquid-layer sloshing [J]. Mathematical Problems in Engineering}, 2014, 350165.

    Google Scholar 

  96. Liu D., Lin P., Xue M. A. et al. Numerical simulation of two-layered liquid sloshing in tanks under horizontal excitations [J]. Ocean Engineering, 2021, 224: 108768.

    Article  Google Scholar 

  97. Luo M. J., Xue M. A., Yuan X. L. et al. Experimental and numerical study of stratified sloshing in a tank under horizontal excitation [J]. Shock and Vibration, 2021, 6639223.

    Google Scholar 

  98. Hashimoto H., Hata Y., Kawamura K. Estimation of oil overflow due to sloshing from oil storage tanks subjected to a possible Nankai Trough earthquake in Osaka bay area [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 337–346.

    Article  Google Scholar 

  99. Yu L., Xue M. A., Jiang Z. Experimental investigation of parametric sloshing in a tank with vertical baffles [J]. Ocean Engineering, 2020, 213: 107783.

    Article  Google Scholar 

  100. Myrillas K., Planquart P., Buchlin J. et al. Small scale experiments of sloshing considering the seismic safety of MYRRHA [J]. International Journal of Hydrogen Energy, 2016, 41(17): 7239–7251.

    Article  Google Scholar 

  101. Tabri K., Broekhuijsen J., Matusiak J. et al. Analytical modelling of ship collision based on full-scale experiments [J]. Marine Structures, 2009, 22(1): 42–61.

    Article  Google Scholar 

  102. Zhang Y. Q., Zang W., Zheng J. H. et al. The influence of waves propagating with the current on the wake of a tidal stream turbine [J]. Applied Energy, 2021, 290: 1–14.

    Article  Google Scholar 

  103. Malenica S., Kwon S. H. An overview of the hydrostructure interactions during sloshing impacts in the Tanks of LNG carriers [J]. Brodogradnja, 2013, 64(1): 22–30.

    Google Scholar 

  104. Abrahamsen B. C., Faltinsen O. M. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations [J]. Physics of Fluids, 2011, 23(10): 102107.

    Article  Google Scholar 

  105. Meziani B., Ourrad O. Capillary effect on the sloshing of a fluid in a rectangular tank submitted to sinusoidal vertical dynamical excitation [J]. Journal of Hydrodynamics, 2014, 26(2): 326–338.

    Article  Google Scholar 

  106. Kamra M. M., Mohd N., Liu C. et al. Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall [J]. Journal of Hydrodynamics, 2018, 30(4): 682–693.

    Article  Google Scholar 

  107. Delorme L. Experimental investigation and numerical simulations with smoothed particle hydrodynamics [D]. Doctoral Thesis, Madrid, Spain: Universidad Politecnica de Madrid, 2008.

    Google Scholar 

  108. Bogaert H., Kaminski M. L. Full and large scale wave impact tests for a better understanding of sloshing-results of the sloshel project [C]. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 2011.

    Google Scholar 

  109. Lafeber W., Brosset L., Bogaert H. Comparison of wave impact tests at large and full scale: results from the Sloshel project [C]. Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012.

    Google Scholar 

  110. Kim S., Kim K., Kim Y. Comparative study on modelscale sloshing tests [J]. Journal of Marine Science and Technology, 2012, 17(1): 47–58.

    Article  Google Scholar 

  111. Kim S., Kim Y., Lee J. Comparison of sloshing-induced pressure in different scale tanks [J]. Ships and offshore structures, 2017, 12(2): 244–261.

    Article  Google Scholar 

  112. Bogaert H., Léonard S., Brosset L. et al. Sloshing and scaling: Results from the Sloshel project [C]. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing, China, 2010.

    Google Scholar 

  113. Kimmoun O., Ratouis A., Brosset L. Sloshing and scaling: Experimental study in a wave canal at two different scales [C]. Proceedings of the 20th international Offshore and Polar Engineering Conference, Beijing, China, 2010.

    Google Scholar 

  114. Wemmenhove R., Luppes R., Veldma A. E. P. et al. Numerical simulation of sloshing in lng tanks with a compressible two-phase model [C]. 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007.

    Google Scholar 

  115. Lee D., Choi H. S., Faltinsen O. M. A study on the sloshing effect on the motion of 2d boxes in regular waves [J]. Journal of Hydrodynamics, 2010, 22(5Suppl.1): 429–434.

    Article  Google Scholar 

  116. Liu L., Li Y., Huang L. et al. Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method [J]. Journal of Hydrodynamics, 2017, 29(1): 124–134.

    Article  Google Scholar 

  117. Manjula R., Sannasiraj S. A. Response of a slender cylindrical member under Breaking wave impact [J]. Journal of Hydrodynamics, 2019, 31(2): 345–357.

    Article  Google Scholar 

  118. Seo M., Kim Y., Park D. Effect of internal sloshing on added resistance of ship [J]. Journal of Hydrodynamics, 2017, 29(1): 13–26.

    Article  Google Scholar 

  119. Zhao W. H., Yang J. M., Hu Z. Q. et al. Experimental investigation of effects of inner-tank sloshing on hydrodynamics of an FLNG system [J]. Journal of Hydrodynamics, 2012, 24(1): 107–115.

    Article  Google Scholar 

  120. Ueda T., Nakagaki R., Koshida K. Suppression of windinduced vibration by dynamic dampers in tower-like structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1): 1907–1918.

    Article  Google Scholar 

  121. An Y., Wang Z., Ou G. et al. Vibration mitigation of suspension bridge suspender cables using a ring-shaped tuned liquid damper [J]. Journal of Bridge Engineering, 2019, 24(4): 04019020.

    Article  Google Scholar 

  122. Zheng M., Ni Y., Wu C. et al. Experimental investigation on effect of sloshing on ship added resistance in head waves [J]. Ocean Engineering, 2021, 235: 109362.

    Article  Google Scholar 

  123. Dou P., Xue M. A., Zheng J. H. et al. Numerical and experimental study of tuned liquid damper effects on suppressing nonlinear vibration of elastic supporting structural platform [J]. Nonlinear Dynamics, 2020, 99: 2675–2691.

    Article  Google Scholar 

  124. Zhang H. S., Wu P. F., Liu W. B. The analysis of secondorder sloshing resonance in a 3-D tank [J]. Journal of Hydrodynamics, 2014, 26(2): 309–315.

    Article  Google Scholar 

  125. Jin Q., Li X., Sun N. et al. Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform [J]. Marine Structures, 2007, 20(4): 238–254.

    Article  Google Scholar 

  126. Mousavi S. A., Zahrai S. M., Bargi K. Optimum geometry of tuned liquid column-gas damper for control of offshore jacket platform vibrations under seismic excitation [J]. Earthquake Engineering and Engineering Vibration, 2012, 11(4): 579–592.

    Article  Google Scholar 

  127. Hokmabady H., Mohammadyzadeh S., Mojtahedi A. Suppressing structural vibration of a jacket-type platform employing a novel Magneto-Rheological Tuned Liquid Column Gas Damper (MR-TLCGD) [J]. Ocean Engineering, 2019, 180: 60–70.

    Article  Google Scholar 

  128. Hemmati A., Oterkus E., Khorasanchi M. Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers [J]. Ocean Engineering, 2019, 172: 286–295.

    Article  Google Scholar 

  129. Lackner M. A., Rotea M. A. Structural control of floating wind turbines [J]. Mechatronics, 2011, 21(4): 704–719.

    Article  Google Scholar 

  130. Yilmaz O. C. The optimization of offshore wind turbine towers using passive tuned mass dampers [D]. Master Thesis, Amherst, USA: University of Massachusetts, 2014.

    Google Scholar 

  131. Brodersen M. L., Bjorke A. S., Hogsberg J. Active tuned mass damper for damping of offshore wind turbine vibrations [J]. Wind Energy, 2017, 20(5): 783–796.

    Article  Google Scholar 

  132. Fitzgerald B., Basu B. Active tuned mass damper control of wind turbine nacelle/tower vibrations with damaged foundations [J]. Key Engineering Materials, 2013, 569: 660–667.

    Article  Google Scholar 

  133. Sun C. Semi-active control of monopile offshore wind turbines under multi-hazards [J]. Mechanical Systems and Signal Processing, 2018, 99: 285–305.

    Article  Google Scholar 

  134. Van-Nguyen D., Basu B. Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers [J]. Structural Control and Health Monitoring, 2015, 22(1): 152–176.

    Article  Google Scholar 

  135. Ghaemmaghami A. R., Kianoush R., Mercan O. Numerical modeling of dynamic behavior of annular tuned liquid dampers for the application in wind towers under seismic loading [J]. Journal of Vibration and Control, 2016, 22(18): 3858–3876.

    Article  Google Scholar 

  136. Colwell S., Basu B. Tuned liquid column dampers in offshore wind turbines for structural control [J]. Engineering Structures, 2009, 31(2): 358–368.

    Article  Google Scholar 

  137. Hemmati A., Oterkus E., Barltrop N. Fragility reduction of offshore wind turbines using tuned liquid column dampers [J]. Soil Dynamics and Earthquake Engineering, 2019, 125:105705.

    Article  Google Scholar 

  138. Si Y., Karimi H. R., Gao H. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine [J]. Engineering Structures, 2014, 69: 168–182.

    Article  Google Scholar 

  139. Coudurier C., Lepreux O., Petit N. Passive and semiactive control of an offshore floating wind turbine using a tuned liquid column damper [C]. IFAC-PapersOnLine, 2015, 48(16): 241–247.

    Article  Google Scholar 

  140. Ha M., Cheong C. Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper [J]. Ocean Engineering, 2016, 116: 157–164.

    Article  Google Scholar 

  141. Banerji P., Murudi M., Shah A. H. et al. Tuned liquid dampers for controlling earthquake response of structures [J]. Earthquake Engineering Structural Dynamics, 2015, 29(5): 587–602.

    Article  Google Scholar 

  142. Coudurier C., Lepreux O., Petit N. Modelling of a tuned liquid multi-column damper. Application to floating wind turbine for improved robustness against wave incidence [J]. Ocean Engineering, 2018, 165: 277–292.

    Google Scholar 

  143. Zhang Z., Staino A., Basu B. et al. Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing [J]. Engineering Structures, 2016, 126: 417–431.

    Article  Google Scholar 

  144. Lee H. H., Wong S. H., Lee R. S. Response mitigation on the offshore floating platform system with tuned liquid column damper [J]. Ocean Engineering, 2006, 33(8-9): 1118–1142.

    Article  Google Scholar 

  145. Shen G. G., Wang R. X., Li D. J. et al. On TLD character of stratified fluid [J]. Journal of Hydrodynamics, Ser. A, 1996, 11(2): 196–204(in Chinese).

    Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Tian-cheng Peng, Mao-fei Chen for their efforts in the literatures collecting and sorting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-An Xue.

Additional information

Projects supported by the National Natural Science Foundation of China (Grant No. 52171256).

Biography

Jin-hai Zheng (1972-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Jh., Xue, MA., Dou, P. et al. A review on liquid sloshing hydrodynamics. J Hydrodyn 33, 1089–1104 (2021). https://doi.org/10.1007/s42241-022-0111-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0111-7

Key words

Navigation