Skip to main content
Log in

Biological and technical aspects on valorization of red microalgae genera Porphyridium

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Red microalgae genera Porphyridium are photoautotrophic microalgae with potential application as a natural source of high-value chemicals, including sulfated exopolysaccharides (EPs), phycobiliproteins (PBPs), and long-chain polyunsaturated fatty acids (LC-PUFAs) such as α-linolenic (ALA), arachidonic (ARA), and eicosapentaenoic acid (EPA). Their good tolerances toward dynamic environmental changes lead them to be attractive for sustainable large-scale production of biomass and biochemicals. Discussion on the biological nature and culture strategies of Porphyridium are helpful for improving more effective and efficient cultivation system, which are presented in this review. The typical biological characteristics and the main targeted biochemicals of Porphyridium like polysaccharides, PUFAs, and PBPs are firstly presented. Some crucial parameters such as temperature, pH, salinity, and light intensity are then discussed for their effect on cell growth and biochemical yield. Recent technology development in large-scale cultivation is also evaluated in the final, which compared the established large-scale culture and recent novel cultures. It is expected that this review could provide new insight for development strategy in optimizing and accelerating more sustainable as well as economically viable industrial biotechnology based on red microalga genera Porphyridium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ruiz J, Olivieri G, de Vreese J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wjiffels RH, Barbosa MJ (2016) Towards industrial products from microalgae, Energy Environ. Sci 9:3036–3043

    Google Scholar 

  2. D’Alessandro EB, Filho NRA (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sustain Energy Rev 58:832–841

  3. Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P (2019) New horizons in culture and valorization of red microalgae. Biotech Adv 37:193–222

    Article  Google Scholar 

  4. Hu J, Nagarajan D, Zhang Q, Chang J-S, Lee D-J (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotech Adv 36:54–67

    Article  Google Scholar 

  5. Barsanti L, Gualtieri P (2018) Is exploitation of microalgae economically and energetically sustainable? Algal Res 31:107–115

    Article  Google Scholar 

  6. Bayu A, Rachman A, Noerdjito DR, Putra YM, Widayatno WB (2020) High-value chemicals from marine diatoms: a biorefinery approach, IOP Conf. Ser.: Earth Environ. Sci 460:1–19

    Google Scholar 

  7. Bayu A, Yoshida A, Guan G (2021) Hierarchical nanoporous silica-based materials from marine diatoms. In: Kharisov B, Kharissova O (eds) Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier, Synthesis at Macroscale and Nanoscale, pp 307–328

    Chapter  Google Scholar 

  8. Tredici MR, Bassi N, Prussi M, Biondi N, Rodolfi L, Zittelli GC, Sampietro G (2015) Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl Energy 154:1103–1111

  9. Gargouch N, Elleuch F, Karkouch I, Tabbene O, Pichon C, Gardarin C, Rihouey C, Picton L, Abdelkafi S, Fendri I, Laroche C (2021) Potential of exopolysaccharide from Porphyridium marinum to contend with bacterial proliferation, biofilm formation, and breast cancer. Mar Drugs 19:1–19

    Article  Google Scholar 

  10. de Jesus Raposo MF, de Morais AMMB, de Morais RMSC (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63

    Article  Google Scholar 

  11. Tannin-Spitz T, Bergman M, D. van-Moppes, S. Grossman, S.M. Arad, (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222

    Article  Google Scholar 

  12. Lauceri R, Zittelli GC, Torzillo G (2019) A simple method for rapid purification of phycobilliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal Res 44:1–11

    Article  Google Scholar 

  13. Fuentes MMR, Fernandez GGA, Perez JAS, Guerrero JLG (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353

    Article  Google Scholar 

  14. Assuncao MFG, Varejao JMTB, Santos LMA (2017) Nutritional characterization of the microalga Ruttnera lamellosa compared to Porphyridium purpureum. Algal Res 26:8–14

    Article  Google Scholar 

  15. Guiheneuf F, Stengel DB (2015) Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res 10:152–163

    Article  Google Scholar 

  16. Li T, Xu J, Wu H, Jiang P, Chen Z, Xiang W (2019) Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Mar Drugs 17:124

    Article  Google Scholar 

  17. Kavitha MD, Shree MHS, Vidyashankar S, Sarada R (2016) Acute and subchronic safety assessment of Porphyridium purpureum biomass in the rat model. J Appl Phycol 28:1071–1083

    Article  Google Scholar 

  18. Safi C, Charton M, Pignolet O, Pontalier P-Y, Vaca-Garcia C (2013) Evaluation of the protein quality of Porphyrium cruentum. J Appl Phycol 25:497–501

    Article  Google Scholar 

  19. Lutzu GA, Zhang L, Zhang Z, Liu T (2017) Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum, Bioprocess Biosyst. Eng 40:73–83

    Google Scholar 

  20. Kavitha MD, Kathiresan S, Bhattacharya S, Sarada R (2016) Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidnoic and eicosapentaenoic acid. J Food Sci Technol 53:2270–2278

    Article  Google Scholar 

  21. Drira M, Elleuch J, Hlima HB, Hentati F, Gardarin C, Rihouey C, Le Cerf D, Michaud P, Abdelkafi S, Fendri I (2021) Optimization of exopolysaccharides production by porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporum. Biomolecules 11:1–17

    Article  Google Scholar 

  22. Medina-Cabrera EV, Ruhmann B, Schmid J, Sieber V (2020) Characterization and comparison of porphyridium sordidum and porphyridium purpureum concerning growth characteristics and polysaccharide production. Algal Res 49:1–9

    Article  Google Scholar 

  23. Liberman GN, Ochbaum G, Mejubovsky-Mikhelis R, Bitton SMA (2020) Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. Int J Biol Macromol 145:1171–1179

    Article  Google Scholar 

  24. Ramus J (1972) The Production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum. J Phycol 8:97–111

    Google Scholar 

  25. Li S, Ji L, Shi Q, Wu H, Fan J (2019) Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp. Bioresour Technol 292:1–16

    Article  Google Scholar 

  26. Nutraceutical business review (2020) Yemoja opens sustainable microalgae production plant. https://www.nutraceuticalbusinessreview.com/news/article_page/Yemoja_opens_sustainable_microalgae_production_plant/166081. Accessed 20 June 2021

  27. Wang W-N, Li Y, Zhang Y, Xiang W, Li A F, Li T (2021) Comparison on characterization and antioxidant activity of exopolysaccharides from two Porphyridium strains. J Appl Phycol 33:2983–2994

  28. Arad SM (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364

    Article  Google Scholar 

  29. Stern A (2012) Alguard™ - One of a kind microalgal protection. Cosmetics and Personal Care Directory 201, B5 srl Via Mario Donati, Milano, Italy. https://en.calameo.com/read/000151313b9ab8fd58f70. Accessed 7 Nov 2021

  30. Cohen E, Arad SM (1989) A closed system for outdoor cultivation of Porphyridium. Biomass 18:59–67

    Article  Google Scholar 

  31. Guiry MD, Guiry GM (2021) World-wide electronic publication. National University of Ireland, Galway, AgaeBase

    Google Scholar 

  32. Aizdaicher NA, Stonik IV, Boroda AV (2014) The development of Porphyridium purpureum (Bory de SaintVincent) Drew et Ross, 1965 (Rhodophyta) from Amursky Bay, Sea of Japan, in a Laboratory Culture. Russian J Mar Biology 40:279–285

    Article  Google Scholar 

  33. Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae, World. J Microbiol Biotechnol 33:1–11

    Google Scholar 

  34. M.d.P. Sanchez-Saavedra, F.Y. Castro-Ochoa, V.M. Nava-Ruiz, D.A. Ruiz-Guereca, A.L. Villagomez-Aranda, F. Siqueiros-Vargas, C.A. Molina-Cardenas, (2018) Effects of nitrogen source and irradiance on Porphyridium cruentum. J Appl Phycol 30:783–792

    Article  Google Scholar 

  35. Pekarkova B, Smarda J, Hindak F (1989) Cell morphology and growth characteristics of Porphyridium aerugineum (Rhodophyta), Plant Syst. Evol 164:263–272

    Google Scholar 

  36. Arad SM, Adda M, Cohen E (1985) The potential of production of sulfateds polysaccharideds from Porphyridium. Plant Soil 89:117–127

    Article  Google Scholar 

  37. Patel AK, Laroche C, Marcati A, Ursu AV, Jubeau S, Marchal L, Petit E, G. \Djelveh, P. Michaud, (2013) Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour Technol 145:345–350

    Article  Google Scholar 

  38. Levy I, Gantt E (1988) Light acclimation in Porphyridium purpureum (Rhodophyta): Growth, photosynthesis and phycobilisomes. J Phycol 24:452–458

    Google Scholar 

  39. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana hustedt and detonula confervacea (cleve) gran. Canadian J Microbiol 8:229–239

    Article  Google Scholar 

  40. Prasad B, Lein W, Thiyam G, Lindenberger CP, Buchholz R, Vadakedath N (2019) Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method. Photosynth Res 140:173–188

    Article  Google Scholar 

  41. Lu X, Nan F, Feng J, Lv J, Liu Q, Liu X, Xie S (2020) Effects of different environmental factors on the growth and bioactive substance accumulation of Porphyridium purpureum. Int J environ Res Publich Health 17:1–14

    Google Scholar 

  42. Ott FD (1987) A brief review of the species of porphyridium with additional records for the rarely collected alga Porphyridium sordidumGeitler, 1932 (Rhodophycophyta, Porphyridiales). Arch Protistenk 134:35–41

    Article  Google Scholar 

  43. Ott FD (1967) A second record of Porphyridium sordidum Geitler. J Phycol 3:34–36

    Article  Google Scholar 

  44. Usov AI (2011) Polysaccharides of the red algae. in: Horton D. (eds) Advances in Carbohydrate Chemistry and Biochemistry, Elsevier, vol. 30 pp. 115–217

  45. Kost H-P, Senser M, Wanner G (1984) Effect of nitrate and sulphate starvation on Porphyridium cruentum Cells. Z Pflanzenphysiol 113:231–249

    Article  Google Scholar 

  46. Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc R Soc Lond B 268:1417–1422

    Article  Google Scholar 

  47. Shimonaga T, Fujiawara S, Kaneko M, Izumo A, Nihei S, Francisco PB Jr, Fujita N, Nakamura Y, Tsuzuki M (2007) Variation in storage α-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotech 9:192–202

    Article  Google Scholar 

  48. Shimonaga T, Konishi M, Oyama Y, Fujiawara S, Satoh A, Fujita N, Colleoni C, Buleon A, Putaux J-L, Ball SG, Yokoyama A, Hara Y, Nakamura Y, Tsuzuki M (2008) Variation in storage a-glucans of the porphyridiales (Rhodophyta). Plant Cell Physiol 49:103–116

    Article  Google Scholar 

  49. Arad SM, Rapoport L, Moshkovich A, van Moppes D, Karpasas M, Golan R, Golan Y (2006) Superior biolubricant from a species of red microalga. Langmuir 22:7313–7317

    Article  Google Scholar 

  50. Singh S, Arad SM, Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275

    Article  Google Scholar 

  51. Risjani Y, Mutmainnah N, Manurung P, Wulan SN, Yunianta, (2021) Exopolysaccharide from Porphyridium cruentum (purpureum) is not toxic and stimulates immune response against vibriosis: the assessment using zebrafish and white shrimp Litopenaeus vannamei. Mar Drugs 19:133

    Article  Google Scholar 

  52. Gantt E, Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell biol 26:365–381

    Article  Google Scholar 

  53. Geresh S, Arad SM (1991) The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol 38:195–201

    Article  Google Scholar 

  54. Heaney-Kieras J, Roden L, Chapman DJ (1977) The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Biochem J 165:1–9

    Article  Google Scholar 

  55. Arad SM, Richmond A (2004) Industrial production of microalgal cell-mass and secondary products - species of high potential: Porphyridium Sp., in: Richmond A (eds) Handbook of microalgal culture: Biotechnology and applied phycology, Blackwell Publishing Ltd, pp. 289–297

  56. Lapidot M, Shrestha RP, Weinstein J, Arad SM (2010) Red Microalgae: from basic know-how to biotechnology, in: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Cellular Origin, Life in Extreme Habitats and Astrobiology, Springer, Dordrecht, vol. 13, pp. 205–225

  57. Liberman GN, Ochbaum G, Arad SM, Bitton R (2016) The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions. Carbohydr Polym 152:658–664

    Article  Google Scholar 

  58. Chang J, Le K, Song X, k. Jiao, X. Zeng, X. Ling, T. Shi, X. Tang, Y. Sun, L. Lin, (2017) Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum, Bioprocess Biosyst. Eng 40:1763–1773

    Google Scholar 

  59. Shanab SMM, Hafez RM, Fouad AS (2018) A review on algae and plants as potential source of arachidonic acid. J Adv Res 11:3–13

    Article  Google Scholar 

  60. Saini RK, Keum Y-S (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance — A review. Life Sci 203:255–267

    Article  Google Scholar 

  61. Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Amer Oil Chem Soc 75:393–397

    Article  Google Scholar 

  62. Asgharpour M, Rodgers B, Hestekin JA (2015) Eicosapentaenoic acid from Porphyridium cruentum: increasing growth and productivity of microalgae for pharmaceutical products. Energies 8:10487–10503

    Article  Google Scholar 

  63. Gargouch N, Karkouch I, Elleuch J, Elkahoui S, Michaud P, Abdelkafi S, Laroche C, Fendri I (2018) Enhanced b-phycoerythrin production by the red microalga porphyridium marinum: a powerful agent in industrial applications. Int J Biol Macromol 120:2106–2114

    Article  Google Scholar 

  64. Kannaujiya VK, Kumar D, Singh V, Sinha R (2021) Advances in phycobiliproteins research: innovations and commercialization, in: Sinha RP, Hader D-P (eds) Natural Bioactive Compounds, Technological Advancements, Academic Press, Elsevier, pp. 57–81

  65. Bhatia L, Bacheti R, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-020-00843-6

  66. Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V (2019) Phycobiliproteins from Cyanobacteria: chemistry and biotechnological applications. Biotech Adv 37:422–443

    Article  Google Scholar 

  67. Kathiresan S, Sarada R, Bhattacharya D, Ravishankar GA (2007) Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnol Bioeng 96:456–463

    Article  Google Scholar 

  68. Lee YK, Vonshak A (1988) The kinetics of photoinhibition and its recovery in the red alga Porphyridium cruentum. Arch Microbiol 150:529–533

    Article  Google Scholar 

  69. Cunningham FX Jr, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem i, photosystem ii, and phycobilisomes in the red alga porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187

    Article  Google Scholar 

  70. Liqin S, Changhai W, Lei S (2008) Effects of light regime on extracellular polysaccharide production by porphyridium cruentum cultured in flat plate photobioreactors, 2nd International Conference on Bioinformatics and Biomedical Engineering 2008, pp. 1488–1491. https://doi.org/10.1109/ICBBE.2008.701

  71. Su G, Jiao K, Chang J, Li Z, Guo X, Sun Y, Zeng X, Lu Y, Lin L (2016) Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour Bioprocess 3:1–9

    Article  Google Scholar 

  72. Soanen N, Da Silva E, Gardarin C, Michaud P, Laroche C (2016) Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour Technol 213:231–238

    Article  Google Scholar 

  73. You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258

    Article  Google Scholar 

  74. Dermoun D, Chaumont D, Thebault J-M, Dauta A (1992) Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: light and temperature. Bioresour Technol 42:113–117

    Article  Google Scholar 

  75. Luo H-P, Dahhan MH (2012) Airlift column photobioreactors for Porphyridium sp. culturing: Part I. effects of hydrodynamics and reactor geometry. Biotech Bioeng 109:932–941

    Article  Google Scholar 

  76. Cunningham FX Jr, Vonshak A, Gantt E (1992) Photoacclimation in the Red Alga Porphyridium cruentum. Plant Physiol 100:1142–1149

    Article  Google Scholar 

  77. Li S, Huang J, Ji L, Chen C, Wu P, Zhang W, Tan G, Wu H, Fan J (2021) Assessment of light distribution model for marine red microalga Porphyridium purpureum for sustainable production in photobioreactor. Algal Res 58:1–7

    Article  Google Scholar 

  78. Huang Z, C. zhong, J. Dai, S. Li, M. Zheng, Y. He, M. Wang, B. Chen, (2021) Simultaneous enhancement on renewable bioactive compounds from Porphyridium cruentum via a novel two-stage cultivation. Algal Res 55:1–10

    Article  Google Scholar 

  79. Ucko M, Chohen E, Gordin H, Arad SM (1989) Relationship between the unicellular red alga Porphyridium sp. and its predator, the Dinoflagellate Gymnodinium sp. Appl Environ Microbiol 55:2990–2994

    Article  Google Scholar 

  80. Vonshak A, Cohen Z, Richmond A (1985) The feasibility of mass cultivation of Prophyridium. Biomass 8:13–25

    Article  Google Scholar 

  81. Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L (2016) Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum, Bioprocess Biosyst. Eng 39:1129–1136

    Google Scholar 

  82. Nuutila AM, Aura A-M, Kiesvaara M, Kauppinen V (1997) The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. J Biotechnol 55:55–63

    Article  Google Scholar 

  83. Li S, Ji L, Chen C, Zhao S, Sun M, Gao Z, Wu H, Fan J (2020) Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour Technol 309:1–9

    Article  Google Scholar 

  84. Ben Hlima H, Dammak M, Karkouch N, Hentati F, Laroche C, Michaud P, Fendri I, Abdelkafi S (2019) Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Int J Biol Macromol 129:152–161

    Article  Google Scholar 

  85. Hu H, Wang H-F, Ma L-L, Shen X-F, Zeng RJ (2018) Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum. Appl Microbiol Biotechnol 102:5763–5773

    Article  Google Scholar 

  86. Castro-Varela P, Saez K, Gomez PI (2021) Effect of urea on growth and biochemical composition of Porphyridium purpureum (Rhodophyta) and scaling-up under non-optimal outdoor conditions, Phycologia, 60:1–1

  87. Difusa A, Mohanty K, Goud V (2016) The chemometric approach applied to FTIR spectral data for the analysis of lipid content in microalgae cultivated in different nitrogen sources, Biomass Conv. Bioref 6:427–433

    Google Scholar 

  88. Adda M, Merchuk JC, Arad SM (1986) Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10:131–140

    Article  Google Scholar 

  89. Zhao L-S, Li K, Wang Q-M, Song X-Y, Su H-N, Xie B-B, Zhang X-Y, Huang F, Chen X-L, Zhou B-C, Zhang Y-Z (2017) Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci Rep 7:1–11

    Google Scholar 

  90. Levy I, Gantt E (1990) Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation. J Phycol 26:62–68

    Article  Google Scholar 

  91. Jiao K, Xiao W, Shi X, Ho S-H, Chang J-S, Ng I-S, Tang X, Sun Y, Zeng X, Lin L (2021) Molecular mechanism of arachidonic acid biosynthesis in Porphyridium purpureum promoted by nitrogen limitation, Bioprocess Biosyst. Eng 44:1491–1499

    Google Scholar 

  92. Pruvost J, Cornet J-F, Pilon L (2016) Large-Scale production of algal biomass: photobioreactors, in: Bux F, Chisti Y (eds) Algae Biotechnology Products and Processes, Springer International Publishing, pp. 41–66. https://doi.org/10.1007/978-3-319-12334-9_3

  93. Hoeniges J, Zhu K, Pruvost J, Legrand J, Si-Ahmed E-K, Pilon L (2021) Impact of dropwise condensation on the biomass production rate in covered raceway ponds. Energies 14:1–23

    Article  Google Scholar 

  94. Cohen E, Koren A, Arad SM (1991) A closed system for outdoor cultivation of microalgae. Biomass Bioenergy 1:83–88

    Article  Google Scholar 

  95. Rodas-Zuluaga LI, Castillo-Zacarias C, Nunez-Goitia G, Martinez-Prado MA, Rodriguez-Rodriguez J, Lopez-Pacheco IY, Sosa-Hernandez JE, Iqbal HMN, Parra-Saldivar R (2021) Implementation of kLa-based strategy for scaling up porphyridium purpureum (red marine microalga) to produce high-value phycoerythrin, fatty acids, and proteins. Mar Drugs 19:290

    Article  Google Scholar 

  96. Xiaogang H, Mohammed J, Jingyuan W, Zheng Y, Li X, Salama E-S (2020) Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-020-01061-w

  97. Merchuk JC, Ronen M, Giris S, Arad SM (2000) Light/dark cycles in the growth of the red microalga Porphyridium sp. Biotech Bioeng 59:705–713

    Article  Google Scholar 

  98. Merchuk JC, Gluz M, Mukmenev I (2000) Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp. J Chem Technol Biotechnol 75:1119–1126

    Article  Google Scholar 

  99. Camacho FG, Gomez AC, Sobczuk TM, Grima EM (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050

    Article  Google Scholar 

  100. Sobczuk TM, Camacho FG, Chisti Y (2006) Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum, Bioprocess Biosyst. Eng 28:243–250

    Google Scholar 

  101. Oostlander PC, J.v. Houcke, R.H. Wijffels, M.J. Barbosa, (2020) Microalgae production cost in aquaculture hatcheries. Aquaculture 525:1–10

    Article  Google Scholar 

  102. Fuentes-Grunewald C, Bayliss C, Zanain M, Pooley C, Scolamacchia M, Silkina A (2015) Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresour Technol 189:357–363

    Article  Google Scholar 

  103. Coward T, Fuentes-Grunewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW (2016) Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Bioresour Technol 221:607–615

    Article  Google Scholar 

  104. Gudin C, Chaumont D (1991) Cell fragility — The key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151

    Article  Google Scholar 

  105. Sun L, Wang S, Chen L, Gong X (2003) Promising Fluorescent probes from phycobiliproteins. IEEE J Sel top Quantum Electron 9:177–188

    Article  Google Scholar 

  106. Li W, Su H-N, Pu Y, Chen J, Liu L-N, Liu Q, Qin S (2019) Phycobiliproteins: molecular Structure, Production, Applications, and Prospects. Biotech Adv 37:340–353

    Article  Google Scholar 

  107. Huang Q, Yao L, Liu T, Yang J (2012) Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 84:718–726

    Article  Google Scholar 

  108. Casas-Arrojo V, Decara J, Arrojo-Agudo MdlA, Perez-Manriquez C, Abdala-Diaz RT (2021) Immunomodulatory, antioxidant activity and cytotoxic effect of sulfated polysaccharides from Porphyridium cruentum. (S.F.Gray) Nägeli. Biomolecules 11: 488

  109. Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of Marine Invertebrate Animals. Springer, Boston, MA., pp. 29–60

  110. Guiheneuf F, Stengel DB (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11:4246–4266

    Article  Google Scholar 

  111. Klyachko-Gurvich GL, Doucha J, Kopezkii J, Ryabykh IE, Semenenko VE (1994) Comparative investigation of fatty acid composition in lipids of various strains of Porphyridium cruentum and Porphyridium aerugineaum. Russian J Plant Physiol 41:248–255

    Google Scholar 

  112. Brody M, Emerson R (1959) The effect ofwavelength and intensity of light on the proportion of pigments in Porphyridium cruentum, American. J Botany 46:433–440

    Article  Google Scholar 

  113. Guillard RR, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  114. Koch W (1952) Untersuchungen an bakterienfreien Masenkulturen der einzelligen Rotalge Porphyridium cruentum Naegeli. Archiv Mikrobiol 18:232–241

    Article  Google Scholar 

  115. Geresh S, Lupescu N, Arad SM (1992) Fractionation and partial characterization of the sulphated polysacccharide of Poprhyridium. Phytochem 31:4181–4186

    Article  Google Scholar 

  116. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmceutical and cosmeceutical industries: tips for success. Mar Drugs 12:1066–1110

    Article  Google Scholar 

  117. Huleihel M, Ishanu V, Tal J, Arad SM (2001) Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol 13:127–134

    Article  Google Scholar 

  118. Pierre G, Delattre C, Dubessay P, Jubeau S, Vialleix C, Cadoret J-P, Probert I, Michaud P (2019) What Is in Store for EPS Microalgae in the Next Decade? Molecules 24:1–25

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge for all materials and financial supports.

Funding

This study was supported by Indonesian Institute of Sciences (LIPI) through National Priority Program “MALSAI” 2021, registration number IPK LIPI-0014.

Author information

Authors and Affiliations

Authors

Contributions

A. Bayu had main contribution on the conceptualization of the article, data collection, and supervision on writing the manuscript. D. R. Noerdjito contributed preparing data and writing morphology as well as physiology description. S. I. Rahmawati, M. Y. Putra, and S. Karnjanakom contributed on data collection and the revision as well as editing the manuscript. All authors contribute equally in manuscript preparation.

Corresponding author

Correspondence to Asep Bayu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayu, A., Noerdjito, D.R., Rahmawati, S.I. et al. Biological and technical aspects on valorization of red microalgae genera Porphyridium. Biomass Conv. Bioref. 13, 12395–12411 (2023). https://doi.org/10.1007/s13399-021-02167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02167-5

Keywords

Navigation