Skip to main content

Advertisement

Log in

Thermogravimetric characteristics and kinetic modeling of Piptocoma discolor pyrolysis and combustion processes to contribute to its use as a renewable energy source in the Ecuadorian Amazon region

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Nowadays, research has focused more on the behavior of the thermodecomposition of new lignocellulosic materials to improve scientific understanding of biomass as an energy resource. The present work focused on determining the thermogravimetric characteristics and kinetic modeling of Piptocoma discolor pyrolysis and combustion processes as a contribution towards understanding its energetic use in the Ecuadorian Amazon region. Thermogravimetric analysis was applied to study the thermal decomposition of P. discolor biomass under inert atmosphere conditions and in the presence of oxygen at a heating rate of 5 °C/min, from room temperature up to 900 °C. A mechanism of three independent parallel reactions was employed to detail the pyrolysis, as well as an additional step to model the combustion process in order to include the char oxidation reaction. The model succeeded in reproducing the degradation curves for pyrolysis and combustion with a very good fit between the experimental and calculated data. We obtained variation coefficient values of less than 5% (pyrolysis 3.19% and combustion 2.97%). Based on these results, it is confirmed that biomass obtained from P. discolor can be used as a source for energy generation using thermoconversion processes. The thermogravimetric and kinetic parameters provide useful information for designing a technically, economically, and environmentally feasible system for the energetic use of the biomass from P. discolor as a renewable resource in the Pastaza province of the Ecuadorian Amazon region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. González JE, Papue A, González V, Borja A, Oliva D (2018) Crecimiento y conservación del Piptocoma discolor (Pigüe) en la Provincia de Pastaza-Ecuador. Revista Cubana de Ciencias Forestales: CFORES 6(3):366–379

    Google Scholar 

  2. González JE, Ponce JPJ, Quintana MP, Cossío NS, Oliva D (2018) Evaluación físico-mecánicas de tableros a base del Aserrín de Pigüe (Piptocoma discolor) y bagazo de caña de azúcar en Pastaza. Revista Amazónica Ciencia y Tecnología 7(2):95–104

    Article  Google Scholar 

  3. Basu P. 2010 Biomass gasification and pyrolysis: practical design and theory. Burlington, MA. USA: Academic press

  4. Rosillo-Calle F (2016) A review of biomass energy–shortcomings and concerns. J Chem Technol Biotechnol 91(7):1933–1945. https://doi.org/10.1002/jctb.4918

    Article  Google Scholar 

  5. Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AaH, Rooney DW (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Letters 19(6):4075–118. https://doi.org/10.1007/s10311-021-01273-0

    Article  Google Scholar 

  6. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102. https://doi.org/10.1016/s1385-8947(02)00142-0

    Article  Google Scholar 

  7. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  8. Abreu-Naranjo R, Conesa JA, Pedretti EF, Romero OR (2012) Kinetic analysis: simultaneous modelling of pyrolysis and combustion processes of dichrostachys cinerea. Biomass Bioenerg 36:170–175. https://doi.org/10.1016/j.biombioe.2011.10.032

    Article  Google Scholar 

  9. Arteaga Crespo Y, Abreu Naranjo R, Vargas Burgos JC, Glauco Sanchez C, Sanchez Sanchez EM (2015) Thermogravimetric analysis of thermal and kinetic behavior of acacia mangium wood. Wood Fiber Sci 47(4):327–335

    Google Scholar 

  10. Várhegyi G, Sebestyén Z, Czégény Z, Lezsovits F, Könczöl Sn (2012) Combustion kinetics of biomass materials in the kinetic regime. Energy & fuels 26(2):1323–35. https://doi.org/10.1021/ef201497k

    Article  Google Scholar 

  11. Conesa JA (2021) Numerical integration of weight loss curves for kinetic analysis. Thermo 1(1):32–44

    Article  Google Scholar 

  12. Freeman ES, Carroll B (1958) The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem 62(4):394–397

    Article  Google Scholar 

  13. Simons E, Newkirk A, Aliferis I (1957) Performance of pen-recording chevenard thermobalance. Anal Chem 29(1):48–54

    Article  Google Scholar 

  14. Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35(10):1464–1468

    Article  Google Scholar 

  15. Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68–69

    Article  Google Scholar 

  16. Friedman HL. 1964 Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of polymer science part C: polymer symposia: Wiley Online Library p. 183–95.

  17. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  Google Scholar 

  18. Ozawa T (1992) Estimation of activation energy by isoconversion methods. Thermochim Acta 203:159–165

    Article  Google Scholar 

  19. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1):163–176. https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  Google Scholar 

  20. Osman AI, Young TJ, Farrell C, Harrison J, Al-Muhtaseb AaH, Rooney DW (2020) Physicochemical characterization and kinetic modeling concerning combustion of waste berry pomace. ACS Sustain. Chem. Eng 8(47):17573–86. https://doi.org/10.1021/acssuschemeng.0c07390

    Article  Google Scholar 

  21. Osman AI, Abdelkader A, Johnston CR, Morgan K, Rooney DW (2017) Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind Eng Chem Res 56(42):12119–12130. https://doi.org/10.1021/acs.iecr.7b03478

    Article  Google Scholar 

  22. Chen D, Zhou J, Zhang Q (2014) Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Biores Technol 169:313–319. https://doi.org/10.1016/j.biortech.2014.07.009

    Article  Google Scholar 

  23. Brachi P, Miccio F, Miccio M, Ruoppolo G (2015) Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process Technol 130:147–154. https://doi.org/10.1016/j.fuproc.2014.09.043

    Article  Google Scholar 

  24. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  Google Scholar 

  25. Osman AI, Farrell C, Al-Muhtaseb AH, Al-Fatesh AS, Harrison J, Rooney DW (2020) Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ Sci Eur 32(1):112. https://doi.org/10.1186/s12302-020-00390-x

    Article  Google Scholar 

  26. Caballero JA, Conesa JA (2005) Mathematical considerations for nonisothermal kinetics in thermal decomposition. J Anal Appl Pyrol 73(1):85–100. https://doi.org/10.1016/j.jaap.2004.12.003

    Article  Google Scholar 

  27. Grønli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41(17):4201–4208. https://doi.org/10.1021/ie0201157

    Article  Google Scholar 

  28. Jeguirim M, Trouvé G (2009) Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Biores Technol 100(17):4026–4031. https://doi.org/10.1016/j.biortech.2009.03.033

    Article  Google Scholar 

  29. Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. thermochimica. Acta 429(2):133–41. https://doi.org/10.1016/j.tca.2005.02.030

    Article  Google Scholar 

  30. Helsen L, Van den Bulck E (2000) Kinetics of the low-temperature pyrolysis of chromated copper arsenate-treated wood. J Anal Appl Pyrol 53(1):51–79. https://doi.org/10.1016/S0165-2370(99)00050-9

    Article  Google Scholar 

  31. ASTM-E1757–01. Standard practice for preparation of biomass for compositional analysis. ASTM International, West Conshohocken, PA; 2007.

  32. Branca C, Di Blasi C, Horacek H (2002) Analysis of the combustion kinetics and thermal behavior of an intumescent system. Ind Eng Chem Res 41(9):2107–2114. https://doi.org/10.1021/ie010841u

    Article  Google Scholar 

  33. Conesa J, Marcilla A, Caballero J, Font R (2001) Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J Anal Appl Pyrol 58:617–633. https://doi.org/10.1016/S0165-2370(00)00130-3

    Article  Google Scholar 

  34. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Biores Technol 100(1):292–298. https://doi.org/10.1007/s13399-020-00816-9

    Article  Google Scholar 

  35. Branca C, Di Blasi C, Russo C (2005) Devolatilization in the temperature range 300–600 K of liquids derived from wood pyrolysis and gasification. Fuel 84(1):37–45. https://doi.org/10.1016/j.fuel.2004.07.007

    Article  Google Scholar 

  36. Cui FM, Zhang XY, Shang LM (2014) Thermogravimetric analysis of biomass pyrolysis under different atmospheres. Appl Mech Mater 448–453:1616–1619. https://doi.org/10.4028/www.scientific.net/AMM.448-453.1616

    Article  Google Scholar 

  37. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Biores Technol 251:63–74. https://doi.org/10.1016/j.biortech.2017.12.029

    Article  Google Scholar 

  38. Brand MA, Barnasky RRdS, Carvalho CA, Buss R, Waltrick DB, Jacinto RC. 2018 Thermogravimetric analysis for characterization of the pellets produced with different forest and agricultural residues. Ciência Rural. 48. https://doi.org/10.1016/j.biortech.2009.08.039.

  39. Gullón IM, Font R, Conesa JA, Jauhiainen J (2004) kinetics of the pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrol 72:9–15. https://doi.org/10.1016/j.jaap.2004.01.003

    Article  Google Scholar 

  40. Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230. https://doi.org/10.1016/j.pecs.2003.10.004

    Article  Google Scholar 

  41. Branca C, Di Blasi C (2003) Global kinetics of wood char devolatilization and combustion. Energy Fuels 17(6):1609–1615. https://doi.org/10.1021/ef030033a

    Article  Google Scholar 

  42. Varhegyi G, Antal MJ, Szekely T, Szabo P (1989) Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy Fuels 3(3):329–335. https://doi.org/10.1021/ef00015a012

    Article  Google Scholar 

  43. Antal M, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind. Eng. Chem. Res 34(3):703–17 (citeulike-article-id:1044833)

    Article  Google Scholar 

  44. Eaton A, Smoot L, Hill S, Eatough C (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog Energy Combust Sci 25(4):387–436. https://doi.org/10.1016/S0360-1285(99)00008-8

    Article  Google Scholar 

  45. Bilbao R, Mastral J, Aldea M, Ceamanos J (1997) The influence of the percentage of oxygen in the atmosphere on the thermal decomposition of lignocellulosic materials. J Anal Appl Pyrol 42(2):189–202. https://doi.org/10.1016/S0165-2370(97)00050-8

    Article  Google Scholar 

  46. Ramajo-Escalera B, Espina A, García J, Sosa-Arnao J, Nebra S (2006) Model-free kinetics applied to sugarcane bagasse combustion. Thermochim Acta 448(2):111–116. https://doi.org/10.1016/j.tca.2006.07.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Ms. Helen Pugh for her extensive proofreading of the manuscript. We appreciate the comments of the reviewers and Editor-in-Chief, who have contributed to improving the manuscript through the peer-review process.

Funding

This study was funded by Universidad Estatal Amazónica, Puyo, Ecuador, and Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE), Cuba. Universidad Estatal Amazonica

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. Also, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Reinier Abreu-Naranjo.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

P. discolor is a promising biomass source of renewable energy.

•An excellent fit between the experimental and calculated data, with a variation of less than 5%, was achieved.

•The thermodecomposition of P. discolor is characterized by a high conversion rate.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J.E.G., Merencio, D.O., Vistín, A.S.R. et al. Thermogravimetric characteristics and kinetic modeling of Piptocoma discolor pyrolysis and combustion processes to contribute to its use as a renewable energy source in the Ecuadorian Amazon region. Biomass Conv. Bioref. 13, 15761–15768 (2023). https://doi.org/10.1007/s13399-021-02178-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02178-2

Keyword

Navigation