Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for the connection between star formation rate and the evolutionary phases of quasars

Abstract

Both theory and observations suggest that outflows driven by an active central supermassive black hole have a feedback effect on shaping the global properties of the host galaxy1,2,3,4,5,6,7,8. However, whether feedback from the outflow is effective, and if so, whether it is positive or negative, have long been controversial. Here, using the latest catalogue from the Sloan Digital Sky Survey, we use the flux ratio of the [O ii] to [Ne v] emission lines as a proxy to compare the star formation rate in the hosts of quasars with different types of broad absorption lines (BALs): low-ionization (Lo)BAL, high-ionization (Hi)BAL and non-BAL. We find that the star formation rate decreases from LoBAL to HiBAL quasars, and then increases from HiBAL to non-BAL quasars. Assuming that the sequence of LoBAL to HiBAL to non-BAL represents evolution, our results are consistent with a quenching and subsequent rebound of star formation in quasar host galaxies. This phenomenon can be explained by suppression of the star formation rate by the outflow and then rebound of the rate once the outflow disappears as the quasars evolve from HiBALs to non-BALs. Our result suggests that the quasar outflow has a negative global feedback on galaxy evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The median composite spectra of quasars from SDSS DR16Q.
Fig. 2: Adopting R as a proxy to investigate the star formation at different phases of quasar evolution.

Similar content being viewed by others

Data availability

The datasets that support the figures within this paper are available as Supplementary Data. The SDSS sample data for different types of quasars in this work are available at http://staff.ustc.edu.cn/z̃cho/sample.html. Any additional data are available from the corresponding author. Source data are provided with this paper.

Code availability

The codes that support the figures within this paper and other findings of this study are available from the corresponding author.

References

  1. Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998).

    ADS  Google Scholar 

  2. Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and quasars. Mon. Not. R. Astron. Soc. 311, 576–588 (2000).

    Article  ADS  Google Scholar 

  3. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    Article  ADS  Google Scholar 

  4. Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. Suppl. Ser. 163, 1–49 (2006).

    Article  ADS  Google Scholar 

  5. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  6. Zubovas, K. & King, A. Clearing out a galaxy. Astrophys. J. Lett. 745, L34 (2012).

    Article  ADS  Google Scholar 

  7. Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary Universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article  ADS  Google Scholar 

  8. He, Z. et al. The properties of broad absorption line outflows based on a large sample of quasars. Nat. Astron. 3, 265–271 (2019).

    Article  ADS  Google Scholar 

  9. Gibson, R. R. et al. A catalog of broad absorption line quasars in Sloan Digital Sky Survey Data Release 5. Astrophys. J. 692, 758–777 (2009).

    Article  ADS  Google Scholar 

  10. Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T. & Belokurov, V. A strong redshift dependence of the broad absorption line quasar fraction. Mon. Not. R. Astron. Soc. 410, 860–884 (2011).

    Article  ADS  Google Scholar 

  11. Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803 (1995).

    Article  ADS  Google Scholar 

  12. Boroson, T. A. Evidence against some orientation effects in radio-quiet quasars. Astrophys. J. Lett. 399, L15 (1992).

    Article  ADS  Google Scholar 

  13. Hall, P. B. et al. Unusual broad absorption line quasars from the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 141, 267 (2002).

    Article  ADS  Google Scholar 

  14. Wang, T., Ferland, G. J., Yang, C., Wang, H. & Zhang, S. Evidence for fluorescent Fe ii emission from extended low ionization outflows in obscured quasars. Astrophys. J. 824, 106 (2016).

    Article  ADS  Google Scholar 

  15. Trump, J. R. et al. A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. Astrophys. J. Suppl. Ser. 165, 1–18 (2006).

    Article  ADS  Google Scholar 

  16. Dai, X., Shankar, F. & Sivakoff, G. R. The intrinsic fractions and radio properties of low-ionization broad absorption line quasars. Astrophys. J. 757, 180 (2012).

    Article  ADS  Google Scholar 

  17. Zhang, S. et al. Low-z Mg ii broad absorption-line quasars from the Sloan Digital Sky Survey. Astrophys. J. 714, 367–383 (2010).

    Article  ADS  Google Scholar 

  18. Lyke, B. W. et al. The Sloan Digital Sky Survey quasar catalog: Sixteenth Data Release. Astrophys. J. Suppl. Ser. 250, 8 (2020).

    Article  ADS  Google Scholar 

  19. York, D. G. et al. Average extinction curves and relative abundances for quasi-stellar object absorption-line systems at 1 ≤ zabs < 2. Mon. Not. R. Astron. Soc. 367, 945–978 (2006).

    Article  ADS  Google Scholar 

  20. Ho, L. C. [O ii] emission in quasar host galaxies: evidence for a suppressed star formation efficiency. Astrophys. J. 629, 680 (2005).

    Article  ADS  Google Scholar 

  21. Maddox, N. [O ii] as a proxy for star formation in AGN host galaxies: beware of extended emission line regions. Mon. Not. R. Astron. Soc. 480, 5203–5210 (2018).

    ADS  Google Scholar 

  22. Willott, C. J., Rawlings, S. & Grimes, J. A. The submillimeter properties of broad absorption line quasars. Astrophys. J. 598, 909–915 (2003).

    Article  ADS  Google Scholar 

  23. Priddey, R. S. et al. A sensitive submillimetre survey of broad absorption-line quasars. Mon. Not. R. Astron. Soc. 374, 867–876 (2007).

    Article  ADS  Google Scholar 

  24. Boroson, T. A. & Meyers, K. A. The optical properties of IR-selected and Mg ii broad absorption line quasars. Astrophys. J. 397, 442–451 (1992).

    Article  ADS  Google Scholar 

  25. Zhang, S. et al. Low-z Mg ii broad absorption-line quasars from the Sloan Digital Sky Survey. Astrophys. J. 714, 367–383 (2010).

    Article  ADS  Google Scholar 

  26. Zhuang, M.-Y. & Ho, L. C. Recalibration of [O ii] λ3727 as a star formation rate estimator for active and inactive galaxies. Astrophys. J. 882, 89 (2019).

    Article  ADS  Google Scholar 

  27. Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S. & Kewley, L. J. The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008).

    Article  ADS  Google Scholar 

  28. Hopkins, P. F. et al. A physical model for the origin of quasar lifetimes. Astrophys. J. Lett. 625, L71–L74 (2005).

    Article  ADS  Google Scholar 

  29. Urrutia, T. et al. The FIRST-2MASS Red Quasar Survey II: an anomalously high fraction of LoBALs in searches for dust-reddened quasars. Astrophys. J. 698, 1095–1109 (2009).

    Article  ADS  Google Scholar 

  30. Tombesi, F. et al. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 519, 436–438 (2015).

    Article  ADS  Google Scholar 

  31. Feruglio, C. et al. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 583, A99 (2015).

    Article  Google Scholar 

  32. Laha, S. et al. Ionized outflows from active galactic nuclei as the essential elements of feedback. Nat. Astron. 5, 13–24 (2021).

    Article  ADS  Google Scholar 

  33. Arav, N. et al. Evidence that 50% of BALQSO outflows are situated at least 100 pc from the central source. Astrophys. J. 857, 60 (2018).

    Article  ADS  Google Scholar 

  34. Abazajian, K. N. et al. The Seventh Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    Article  ADS  Google Scholar 

  35. Smee, S. A. et al. The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. Astron. J. 146, 32 (2013).

    Article  ADS  Google Scholar 

  36. Dawson, K. S. et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 145, 10 (2013).

    Article  ADS  Google Scholar 

  37. Dawson, K. S. et al. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: overview and early data. Astron. J. 151, 44 (2016).

    Article  ADS  Google Scholar 

  38. Vestergaard, M. & Wilkes, B. J. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Suppl. Ser. 134, 1–33 (2001).

    Article  ADS  Google Scholar 

  39. Véron-Cetty, M.-P., Joly, M. & Véron, P. The unusual emission line spectrum of I Zw 1. Astron. Astrophys. 417, 515–525 (2004).

    Article  ADS  Google Scholar 

  40. Weymann, R. J., Morris, S. L., Foltz, C. B. & Hewett, P. C. Comparisons of the emission-line and continuum properties of broad absorption line and normal quasi-stellar objects. Astrophys. J. 373, 23 (1991).

    Article  ADS  Google Scholar 

  41. Shen, Y. & Ménard, B. On the link between associated Mg ii absorbers and star formation in quasar hosts. Astrophys. J. 748, 131 (2012).

    Article  ADS  Google Scholar 

  42. Chen, Z.-F. et al. The reddening and [O ii] emissions of the quasar Mg ii absorption-line systems. Astrophys. J. 893, 25 (2020).

    Article  ADS  Google Scholar 

  43. Prevot, M. L., Lequeux, J., Maurice, E., Prevot, L. & Rocca-Volmerange, B. The typical interstellar extinction in the Small Magellanic Cloud. Astron. Astrophys. 132, 389–392 (1984).

    ADS  Google Scholar 

  44. Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys. J. 395, 130 (1992).

    Article  ADS  Google Scholar 

  45. Richards, G. T. et al. Red and reddened quasars in the Sloan Digital Sky Survey. Astron. J. 126, 1131–1147 (2003).

    Article  ADS  Google Scholar 

  46. Baldwin, J. A. Luminosity indicators in the spectra of quasi-stellar objects. Astrophys. J. 214, 679–684 (1977).

    Article  ADS  Google Scholar 

  47. Zhang, K., Wang, T.-G., Gaskell, C. M. & Dong, X.-B. The Baldwin effect in the narrow emission lines of active galactic nuclei. Astrophys. J. 762, 51 (2013).

    Article  ADS  Google Scholar 

  48. Schulze, A. et al. Near-IR spectroscopy of luminous LoBAL quasars at 1 < z < 2.5. Astrophys. J. 848, 104 (2017).

    Article  ADS  Google Scholar 

  49. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    Article  ADS  Google Scholar 

  50. Daddi, E. et al. Multiwavelength study of massive galaxies at z ~ 2. I. Star formation and galaxy growth. Astrophys. J. 670, 156–172 (2007).

    Article  ADS  Google Scholar 

  51. Xie, Y., Ho, L. C., Zhuang, M.-Y. & Shangguan, J. The infrared emission and vigorous star formation of low-redshift quasars. Astrophys. J. 910, 124 (2021).

    Article  ADS  Google Scholar 

  52. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  53. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    Article  ADS  Google Scholar 

  54. Chen, Z.-F. et al. Quasar properties from the Sloan Digital Sky Survey. II. The quasars obtained by the SDSS-IV in the first two years. Astrophys. J. Suppl. Ser. 244, 36 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.C. is supported by the National Natural Science Foundation of China (12073007), the Guangxi Natural Science Foundation (2019GXNSFFA245008, GKAD19245136 and 2018GXNSFAA050001), the National Natural Science Foundation of China (11763001) and the Scientific Research Project of Guangxi University for Nationalities (2018KJQD01). Z.H. is supported by NSFC-11903031 and 12192221 and USTC Research Funds of the Double First-Class Initiative YD 3440002001. L.C.H. is supported by the National Science Foundation of China (11721303 and 11991052) and the National Key R&D Program of China (2016YFA0400702). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is http://www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University and Yale University.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. made the calculations, wrote the manuscript and comprehensively discussed the idea. Z.H. presented the idea, discussed the calculations and wrote the main text of the manuscript. L.C.H. oversaw and revised the whole manuscript. Q.G., T.W. and M.Z. discussed the idea and calculations. G.L. and Z.W. gave comments on the revision of the manuscript. All authors discussed and gave comments on the contents of the paper.

Corresponding author

Correspondence to Zhicheng He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Astronomy thanks Jonathan Trump and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The composite spectra after reddening corrections.

Using the Small Magellanic Cloud extinction curve with AV = 0.088 mag for the HiBALs (blue line) and 0.417 mag for the LoBALs (red line).

Source data

Extended Data Fig. 2 The variation of line ratio R = EW[O II]/EW[Ne v] as quasars evolve for different black hole masses.

The line ratio R significantly decreases and then increases as quasars evolve from LoBALs to HiBALs to non-BALs, for each of the three bins of black hole masses. The vertical error bars mark the 1σ uncertainty of the line ratio.

Source data

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–7.

Source data

Source Data Fig. 1

The median composite spectra of three types of quasars.

Source Data Fig. 2

The line ratio at different phases of quasar evolution.

Source Data Extended Data Fig. 1

The composite spectra after reddening corrections.

Source Data Extended Data Fig. 2

The line ratio for quasar with different black hole masses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., He, Z., Ho, L.C. et al. Evidence for the connection between star formation rate and the evolutionary phases of quasars. Nat Astron 6, 339–343 (2022). https://doi.org/10.1038/s41550-021-01561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01561-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing