Skip to main content

Advertisement

Log in

Sustainable production of cashew nutshell briquettes: experimental assessment and optimization of factors affecting the physical and fuel characteristics

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Physical, mechanical, and energy characteristics of the briquettes produced with cashew nutshell waste under different process conditions are reported in the present study. The cashew nutshell briquettes are produced with a lower compression force of ≤ 7.75 kN. The main objective of the study is to examine the effects of binder (starch), binder water addition, and drying duration on the different characteristics of the cashew nutshell briquettes. The influence of these parameters on the various properties was examined with the help of ANOVA and regression analysis. From the experimental results and mathematical models, it is evident that the most influencing parameter was found to be starch content and drying duration. Binder water content addition did not significantly affect the quality of the briquettes. The optimal values achieved for the analyzed briquetting process parameters are starch content of 12.917%, water content of 50%, and a drying duration of 7 days. According to the mathematical model achieved, these optimal parameters gave a maximum compressive strength of 1249.17 kPa, optimal density of 1047.681 kg/m3, shatter resistance of 99.9%, durability of 99.547%, water-resistance of 97.342%, the calorific value of 18.681 MJ/kg, and moisture content of 11.789%. Furthermore, it was found in the study, the volumetric energy density of the biomass increased from 9.497 to 19.57 GJ/m3. The results of the tests and optimization study indicate that cashew nutshell briquettes have good mechanical and energy properties that make them eligible for use in different thermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Tripathi N, Hills CD, Singh RS, Atkinson CJ (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim Atmos Sci 2:1–10. https://doi.org/10.1038/s41612-019-0093-5

    Article  Google Scholar 

  2. Mubofu EB, Mgaya JE (2018) Chemical valorization of cashew nut shell waste. Top Curr Chem 376:1–15. https://doi.org/10.1007/s41061-017-0177-9

    Article  Google Scholar 

  3. FAO (2019) Food and agricultural organization of the United Nations Statistics Division. https://www.fao.org/faostat/en/#data/QCL

  4. Sharma P, Gaur VK, Sirohi R et al (2020) Valorization of cashew nut processing residues for industrial applications. Ind Crops Prod 152:112550. https://doi.org/10.1016/j.indcrop.2020.112550

    Article  Google Scholar 

  5. Oliveira NN, Mothé CG, Mothé MG, de Oliveira LG (2020) Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. J Food Sci Technol 57:12–21. https://doi.org/10.1007/s13197-019-04051-7

    Article  Google Scholar 

  6. Chandrasekara N, Shahidi F (2011) Antioxidative potential of cashew phenolics in food and biological model systems as affected by roasting. Food Chem 129:1388–1396. https://doi.org/10.1016/j.foodchem.2011.05.075

    Article  Google Scholar 

  7. Mohod AG, Khandetod YP, Powar AG (2008) Processed cashew shell waste as fuel supplement for heat generation. Energy Sustain Dev 12:73–76. https://doi.org/10.1016/S0973-0826(09)60009-0

    Article  Google Scholar 

  8. Okereke G, Emmanuel O, Ude VC et al (2020) Physicochemical characteristics, acute and subacute toxicity of cashew nut shell oil in Wistar rats. Sci African 8:e00391. https://doi.org/10.1016/j.sciaf.2020.e00391

    Article  Google Scholar 

  9. Salehi B, Gültekin-Özgüven M, Kirkin C et al (2019) Anacardium plants: chemical, nutritional composition and biotechnological applications. Biomolecules 9:1–34. https://doi.org/10.3390/biom9090465

    Article  Google Scholar 

  10. Song B, Cooke-Willis M, Theobald B, Hall P (2021) Producing a high heating value and weather resistant solid fuel via briquetting of blended wood residues and thermoplastics. Fuel 283:119263. https://doi.org/10.1016/j.fuel.2020.119263

    Article  Google Scholar 

  11. Kaliyan N, Morey RV (2009) Strategies to improve durability of switchgrass briquettes. Trans Asabe 52:1943–1953. https://doi.org/10.13031/2013.24036

    Article  Google Scholar 

  12. Kaliyan N, Morey RV (2010) Densification characteristics of corn cobs. Fuel Process Technol 91:559–565. https://doi.org/10.1016/j.fuproc.2010.01.001

    Article  Google Scholar 

  13. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101:1082–1090. https://doi.org/10.1016/j.biortech.2009.08.064

    Article  Google Scholar 

  14. Chin OC, Siddiqui KM (2000) Characteristics of some biomass briquettes prepared under modest die pressures. Biomass Bioenerg 18:223–228. https://doi.org/10.1016/S0961-9534(99)00084-7

    Article  Google Scholar 

  15. Yank A, Ngadi M, Kok R (2016) Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenerg 84:22–30. https://doi.org/10.1016/j.biombioe.2015.09.015

    Article  Google Scholar 

  16. Sotannde OA, Oluyege AO, Abah GB (2010) Physical and combustion properties of charcoal briquettes from neem wood residues. Int Agrophysics 24:189–194

    Google Scholar 

  17. Muazu RI, Stegemann JA (2017) Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 194:339–347. https://doi.org/10.1016/j.fuel.2017.01.019

    Article  Google Scholar 

  18. Kpalo SY, Zainuddin MF, Manaf LA, Roslan AM (2020) Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. J Clean Prod 2020:124745. https://doi.org/10.1016/j.jclepro.2020.124745

    Article  Google Scholar 

  19. Ojha DK, Kumar VSP, Vinu R (2021) Analytical pyrolysis of bagasse and groundnut shell briquettes: kinetics and pyrolysate composition studies. Bioresour Technol Reports 15:100784. https://doi.org/10.1016/j.biteb.2021.100784

    Article  Google Scholar 

  20. Lu D, Yoshikawa K, Ismail TM, Abd El-Salam M (2018) Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model. Appl Energy 220:70–86. https://doi.org/10.1016/j.apenergy.2018.03.063

    Article  Google Scholar 

  21. Okot DK, Bilsborrow PE, Phan AN (2018) Effects of operating parameters on maize COB briquette quality. Biomass Bioenerg 112:61–72. https://doi.org/10.1016/j.biombioe.2018.02.015

    Article  Google Scholar 

  22. Amarasekara A, Tanzim FS, Asmatulu E (2017) Briquetting and carbonization of naturally grown algae biomass for low-cost fuel and activated carbon production. Fuel 208:612–617. https://doi.org/10.1016/j.fuel.2017.07.034

    Article  Google Scholar 

  23. Tanui JK, Kioni PN, Kariuki PN, Ngugi JM (2018) Influence of processing conditions on the quality of briquettes produced by recycling charcoal dust. Int J Energy Environ Eng 9:341–350. https://doi.org/10.1007/s40095-018-0275-7

    Article  Google Scholar 

  24. Abyaz A, Afra E, Saraeyan A (2020) Improving technical parameters of biofuel briquettes using cellulosic binders. Energy Sources, Part A Recover Util Environ Eff 1:1–12. https://doi.org/10.1080/15567036.2020.1806955

    Article  Google Scholar 

  25. Teixeira SR, Pena AFV, Miguel AG (2010) Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel. Waste Manag 30:804–807. https://doi.org/10.1016/j.wasman.2010.01.018

    Article  Google Scholar 

  26. Temmerman M, Rabier F, Jensen PD et al (2006) Comparative study of durability test methods for pellets and briquettes. Biomass Bioenerg 30:964–972. https://doi.org/10.1016/j.biombioe.2006.06.008

    Article  Google Scholar 

  27. Nagarajan J, Prakash L (2021) Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04.457

    Article  Google Scholar 

  28. Tumuluru JS, Yancey NA, Kane JJ (2021) Pilot-scale grinding and briquetting studies on variable moisture content municipal solid waste bales – impact on physical properties, chemical composition, and calorific value. Waste Manag 125:316–327. https://doi.org/10.1016/j.wasman.2021.02.013

    Article  Google Scholar 

  29. Khorasgani NB, Sengul AB, Asmatulu E (2020) Briquetting grass and tree leaf biomass for sustainable production of future fuels. Biomass Conv Bioref 10:915–924

    Article  Google Scholar 

  30. García R, González-Vázquez MP, Pevida C, Gil MV (2021) Co-pelletization of pine sawdust and refused derived fuel (RDF) to high-quality waste-derived pellets. J Clean Prod 328:129635

    Article  Google Scholar 

  31. Cesprini E, Greco R, Causin V et al (2021) Quality assessment of pellets and briquettes made from glued wood waste. Eur J Wood Wood Prod 79:1153–1162. https://doi.org/10.1007/s00107-021-01695-1

    Article  Google Scholar 

  32. Akbar A, Aslam U, Asghar A, Aslam Z (2021) Effect of binding materials on physical and fuel characteristics of bagasse based pellets. Biomass Bioenerg 150:106118. https://doi.org/10.1016/j.biombioe.2021.106118

    Article  Google Scholar 

  33. Antwi-Boasiako C, Acheampong BB (2016) Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass Bioenerg 85:144–152. https://doi.org/10.1016/j.biombioe.2015.12.006

    Article  Google Scholar 

  34. Lela B, Barišić M, Nižetić S (2016) Cardboard/sawdust briquettes as biomass fuel: physical-mechanical and thermal characteristics. Waste Manag 47:236–245. https://doi.org/10.1016/j.wasman.2015.10.035

    Article  Google Scholar 

  35. Helwani Z, Fatra W, Arifin L et al (2018) Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture empty fruit bunches (EFB). IOP Conf Ser Mater Sci Eng 345:012020. https://doi.org/10.1088/1757-899X/345/1/012020

    Article  Google Scholar 

  36. Chungcharoen T, Srisang N (2020) Preparation and characterization of fuel briquettes made from dual agricultural waste: cashew nut shells and areca nuts. J Clean Prod 256:120434. https://doi.org/10.1016/j.jclepro.2020.120434

    Article  Google Scholar 

  37. Sawadogo M, Tchini Tanoh S, Sidibé S et al (2018) Cleaner production in Burkina Faso: case study of fuel briquettes made from cashew industry waste. J Clean Prod 195:1047–1056. https://doi.org/10.1016/j.jclepro.2018.05.261

    Article  Google Scholar 

  38. Aransiola EF, Oyewusi TF, Osunbitan JA, Ogunjimi LAO (2019) Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Rep 5:909–918. https://doi.org/10.1016/j.egyr.2019.07.011

    Article  Google Scholar 

  39. ASTM D7928 (2017) Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM Int. https://doi.org/10.1520/D7928-17

    Article  Google Scholar 

  40. ASTM (2014) American Society for Testing Materials - ASTM D2395:14: standard test method for density and specific gravity (relative density) of wood and wood-based materials. Annu B ASTM Stand 93:1–13. https://doi.org/10.1520/D2395-14.2

    Article  Google Scholar 

  41. Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenerg 33:337–359. https://doi.org/10.1016/j.biombioe.2008.08.005

    Article  Google Scholar 

  42. Rajaseenivasan T, Srinivasan V, Syed Mohamed Qadir G, Srithar K (2016) An investigation on the performance of sawdust briquette blending with neem powder. Alexandria Eng J 55:2833–2838. https://doi.org/10.1016/j.aej.2016.07.009

    Article  Google Scholar 

  43. ASTM D440-86 (2002) Standard test method of drop shatter test for coal, vol 05. ASTM International, West Conshohocken, pp 4–7

    Google Scholar 

  44. Kpalo SY, Zainuddin MF, Manaf LA, Roslan AM (2020) Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustain 12:062468. https://doi.org/10.3390/su12062468

    Article  Google Scholar 

  45. ASTM D4442 (2003) Standard test methods for direct moisture content measurement of wood and wood-base materials. Annu B ASTM Stand 92:1–6

    Google Scholar 

  46. Raveendran Thulasibai ASR, Velayudhan S, Pathath M et al (2021) Experimental and numerical evaluation of the parameters influencing the shear-stress behavior of interlocking paver blocks–bedding sand interface using large-scale direct shear test. J Mater Civ Eng 33:04021104. https://doi.org/10.1061/(asce)mt.1943-5533.0003724

    Article  Google Scholar 

  47. Rahaman SA, Salam PA (2017) Characterization of cold densified rice straw briquettes and the potential use of sawdust as binder. Fuel Process Technol 158:9–19. https://doi.org/10.1016/j.fuproc.2016.12.008

    Article  Google Scholar 

  48. Stasiak M, Molenda M, Bańda M et al (2017) Mechanical and combustion properties of sawdust—straw pellets blended in different proportions. Fuel Process Technol 156:366–375. https://doi.org/10.1016/j.fuproc.2016.09.021

    Article  Google Scholar 

  49. Muazu RI, Stegemann JA (2015) Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process Technol 133:137–145. https://doi.org/10.1016/j.fuproc.2015.01.022

    Article  Google Scholar 

  50. Kers J, Kulu P, Aruniit A et al (2010) Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Est J Eng 16:307. https://doi.org/10.3176/eng.2010.4.06

    Article  Google Scholar 

  51. Gendek A, Aniszewska M, Malaťák J, Velebil J (2018) Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenerg 117:173–179. https://doi.org/10.1016/j.biombioe.2018.07.025

    Article  Google Scholar 

  52. Suhartini S, Hidayat N, Wijaya S (2011) Physical properties characterization of fuel briquette made from spent bleaching earth. Biomass Bioenerg 35:4209–4214. https://doi.org/10.1016/j.biombioe.2011.07.002

    Article  Google Scholar 

  53. Li Y, Liu H (2000) High-pressure densification of wood residues to form an upgraded fuel. Biomass Bioenerg 19:177–186. https://doi.org/10.1016/S0961-9534(00)00026-X

    Article  Google Scholar 

  54. Lubwama M, Yiga VA (2017) Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renew Energy 111:532–542. https://doi.org/10.1016/j.renene.2017.04.041

    Article  Google Scholar 

  55. Orisaleye JI, Jekayinfa SO, Pecenka R, Onifade TB (2019) Effect of densification variables on water resistance of corn cob briquettes. Agron Res 17:1722–1734. https://doi.org/10.15159/AR.19.171

    Article  Google Scholar 

  56. Kpalo SY, Zainuddin MF, Halim HBA et al (2019) Physical characterization of briquettes produced from paper pulp and Mesua ferrea mixtures Physical characterization of briquettes produced from paper pulp and biofuels 0:1–8. https://doi.org/10.1080/17597269.2019.1695361

  57. Telmo C, Lousada J (2011) Heating values of wood pellets from different species. Biomass Bioenerg 35:2634–2639. https://doi.org/10.1016/j.biombioe.2011.02.043

    Article  Google Scholar 

  58. Prokkola H, Kuokkanen M, Kuokkanen T, Lassi U (2014) Chemical study of wood chip drying: biodegradation of organic pollutants in condensate waters from the drying process. BioResources 9:3761–3778. https://doi.org/10.15376/biores.9.3.3761-3778

    Article  Google Scholar 

  59. Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20:105–111. https://doi.org/10.1260/014459802760170420

    Article  Google Scholar 

  60. Kang SB, Oh HY, Kim JJ, Choi KS (2017) Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW). Renew Energy 113:1208–1214. https://doi.org/10.1016/j.renene.2017.06.092

    Article  Google Scholar 

  61. Krajnc N (2015) Wood fuels handbook

    Google Scholar 

  62. Huang Y, Finell M, Larsson S et al (2017) Biofuel pellets made at low moisture content – influence of water in the binding mechanism of densified biomass. Biomass Bioenerg 98:8–14. https://doi.org/10.1016/j.biombioe.2017.01.002

    Article  Google Scholar 

  63. Lisowski A, Dąbrowska-Salwin M, Ostrowska-Ligęza E et al (2017) Effects of the biomass moisture content and pelleting temperature on the pressure-induced agglomeration process. Biomass Bioenerg 107:376–383. https://doi.org/10.1016/j.biombioe.2017.10.029

    Article  Google Scholar 

  64. Butterfield B (1980) Three-dimensional structure of wood: an ultrastructural approach

  65. Shuma MR, Madyira DM, Oosthuizen GA (2017) Emissions testing of loose biomass in Limpopo Province of South Africa. Procedia Manuf 8:239–245. https://doi.org/10.1016/j.promfg.2017.02.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. S. T. Ramesh and Mr. T. T. Ajith Kumar have equally contributed to the design and performance of the research work, the analysis of the results, and for writing and revising of the manuscript.

Corresponding author

Correspondence to S. T. Ramesh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajith Kumar, T., Ramesh, S. Sustainable production of cashew nutshell briquettes: experimental assessment and optimization of factors affecting the physical and fuel characteristics. Biomass Conv. Bioref. 13, 16969–16990 (2023). https://doi.org/10.1007/s13399-021-02234-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02234-x

Keywords

Navigation