Skip to main content

Advertisement

Log in

Sphagnum physiological responses to elevated temperature, nitrogen, CO2 and low moisture in laboratory and in situ microhabitats: a review

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Sphagnum mosses are considered peatland engineers because of their ability to create conditions inducing carbon accumulation. Here, we report on a review of the effects of four environmental variables (elevated temperature, N and CO2 and reduced moisture) on the capitulum biomass, length increment, respiration, photosynthetic capability, N and P exchange and content of the 3 most studied Sphagnum subgenera (Acutifolia, Cuspidata, Sphagnum). Overall, we observe that, when compared to in situ experiments, laboratory experiments tend to exacerbate length increments and underestimate maximum photosynthesis in most of the studies inventoried. This review underscores some differences among results that can be associated with the used of different protocols (e.g. exposure time, instrumental analysis). Studies that investigated the impact of elevated temperature (2–5 °C) on Sphagnum reveal an increase in length, respiration and photosynthesis regardless of the experimental conditions and subgenus. Elevated N (3–23 g Nm−2y−1) on the other hand appears to reduce the length increment but had contrasting effects on photosynthesis. Some divergent responses are found with Cuspidata species because of their tolerance to high doses of N. Low moisture reduces the length increment and photosynthesis of species of the Cuspidata and Sphagnum subgenera but has different effects on species of the Acutifolia subgenus, which are relatively tolerant to water fluctuations. Responses to elevated CO2 have no clear trends reported. Allelochemical interactions between Sphagnum, their microbiome or surrounding mosses or other plants were found to be determinant to Sphagnum responses under those variables and reinforce the interest of such investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Wallén B, Malmer N, De Caluwe H (2001) Nutritional constraints on Sphagnum growth and potential decay in northern peatlands. J Ecol 89:292–299

    Article  CAS  Google Scholar 

  • Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC (2009) Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Funct Ecol 23:680–688

    Article  Google Scholar 

  • Aldous AR (2002) Nitrogen translocation in Sphagnum mosses: Effects of atmospheric nitrogen deposition. New Phytol 156:241–253

    Article  CAS  PubMed  Google Scholar 

  • Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14:869–875

    Article  CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee JA (1992) Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytol 120:265–274

    Article  CAS  Google Scholar 

  • Bengtsson F, Granath G, Rydin H (2016) Photosynthesis, growth, and decay traits in Sphagnum, a multispecies comparison. Ecol Evol 6:3325–3341

    Article  PubMed  PubMed Central  Google Scholar 

  • Berendse F, Van Breemen N, Rydin H et al (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–598

    Article  Google Scholar 

  • Binet P, Rouifed S, Jassey VEJ, Tousaint M-L, Chiapusio G (2017) Experimental climate warming alters the relationship between fungal root symbiosis and Sphagnum litter phenolics in two peatland microhabitats. Soil Biol Biochem 105:153–161

    Article  CAS  Google Scholar 

  • Bonnett SAF, Ostle N, Freema C (2010) Short-term effect of deep shade and enhanced nitrogen supply on Sphagnum capillifolium morphophysiology. Plant Ecol 207:347–358

    Article  Google Scholar 

  • Bragazza L (2008) A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob Change Biol 14:2688–2695

    Article  Google Scholar 

  • Bragazza L, Buttler A, Robroek BJM et al (2016) Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob Change Biol 22:4114–4123

    Article  Google Scholar 

  • Breeuwer A, Heijmans MMPD, Robroek BJM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia 156:155–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Breeuwer A, Heijmans MMPD, Gleichman M, Robroek BJM, Berendse F (2009) Response of Sphagnum species mixtures to increased temperature and nitrogen availability. Plant Ecol 204:97–111

    Article  Google Scholar 

  • Brock TC, Bregman R (1989) Periodicity in growth, productivity, nutrient content and decomposition of Sphagnum recurvum var. mucronatum in a fen woodland. Oecologia 80:44–52

    Article  CAS  PubMed  Google Scholar 

  • Bu ZJ, Rydin H, Chen X (2011) Direct and interaction mediated effects of environmental changes on peatland bryophytes. Oecologia 166:555–563

    Article  PubMed  Google Scholar 

  • Bu ZJ, Zheng XX, Rydin H, Moore T, Ma J (2013) Facilitation vs. competition: does interspecific interaction affect drought responses in Sphagnum? Basic Appl Ecol 14:574–584

    Article  Google Scholar 

  • Buttler A, Robroek BJM, Laggoun-Defarge F et al (2015) Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J Veg Sci 26:964–974

    Article  Google Scholar 

  • Cardona-Correa C, Graham JM, Graham LE (2015) Anatomical effects of temperature and UV-A + UV-B treatments and temperature-UV interactions in the peatmoss Sphagnum compactum. Int J Plant Sci 176:159–169

    Article  Google Scholar 

  • Carfrae JA, Sheppard LJ, Raven JA, Leith ID, Crossley A (2007) Potassium and phosphorus additions modify the response of Sphagnum capillifolium growing on a Scottish ombrotrophic bog to enhanced nitrogen deposition. Appl Geochem 22:1111–1121

    Article  CAS  Google Scholar 

  • Carrell AA, Kolton M, Glass JB et al (2019) Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob Change Biol 25:2993–3004

    Article  Google Scholar 

  • Chiapusio G, Jassey VEJ, Hussain MI, Binet P (2013) Evidences of bryophyte allelochemical interactions: the case of Sphagnum. In: Cheema ZA, Faroq M, Wahid A (eds) Current trends and future applications. Springer Verlag Berlin, Allelopathy, pp 39–54

    Chapter  Google Scholar 

  • Chiapusio G, Jassey VEJ, Bellvert F et al (2018) Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding ericaceous dwarf shrubs along peatland microhabitats. J Chem Ecol 12:1146–1157

    Article  CAS  Google Scholar 

  • Chiwa M, Sheppard LJ, Leith ID, Leeson SR, Tang YS, Cape JN (2016) Sphagnum can ‘filter’ N deposition, but effects on the plant and pore water depend on the N form. Sci Total Environ 559:113–120

    Article  CAS  PubMed  Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, New York, pp 229–289

    Chapter  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NAH, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2016) Enhanced carbon release under future climate conditions in a peatland mesocosm experiment: the role of phenolic compounds. Plant Soil 400:81–91

    Article  CAS  Google Scholar 

  • Dorrepaal E, Aerts R, Cornelissen JH, Callaghan TV, Van Logtestijn RS (2004) Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob Change Biol 10:93–104

    Article  Google Scholar 

  • Edwards KR, Kaštovská E, Borovec J, Šantrůčková H, Picek T (2018) Species effects and seasonal trends on plant efflux quantity and quality in a spruce swamp forest. Plant Soil 426:179–196

    Article  CAS  Google Scholar 

  • Espiñeira JM, Uzal EN, Ros LVG et al (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68

    Article  PubMed  CAS  Google Scholar 

  • Fritz C, Van Dijk G, Smolders AJP et al (2012) Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads: Nutrient additions in pristine Patagonian Sphagnum bog vegetation. Plant Biol 14:491–499

    Article  CAS  PubMed  Google Scholar 

  • Fritz C, Lamers LPM, Riaz M, van den Berg LJL, Elzenga TJTM (2014) Sphagnum mosses—masters of efficient N-uptake while avoiding intoxication. PLoS ONE 9:1–11

    Article  Google Scholar 

  • Fudyma JD, Lyon J, Tabrizi RA et al (2019) Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct 3:1–17

    Article  Google Scholar 

  • Fukuta E, Sasaki A, Nakatsubo T (2012) Microclimate and production of peat moss Sphagnum palustre L. in the warm-temperate zone: microclimate and production of Sphagnum. Plant Species Biol 27:110–118

    Article  Google Scholar 

  • Gaudig G, Krbs M, Joosten H (2020) Sphagnum growth under N saturation: interactive effects of water level and P or K fertilization. Plant Biol 22:394–403

    Article  CAS  PubMed  Google Scholar 

  • Gehrke C (1998) Effects of enhanced UV-B radiation on production-related properties of a Sphagnum fuscum dominated subarctic bog. Funct Ecol 12:940–947

    Article  Google Scholar 

  • Gerdol R, Vicentini R (2011) Response to heat stress of populations of two Sphagnum species from alpine bogs at different altitudes. Environ Exp Bot 74:22–30

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  PubMed  Google Scholar 

  • Graham JA, Vitt DH (2016) The limiting roles of nitrogen and moisture on Sphagnum angustifolium over a depth to water table gradient. Plant Soil 404:427–439

    Article  CAS  Google Scholar 

  • Granath G, Strengbom J, Breeuwer A, Heijmans MMPD, Berendse F, Rydin H (2009a) Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia 159:705–715

    Article  PubMed  Google Scholar 

  • Granath G, Wiedermann MM, Strengbom J (2009b) Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum. Oecologia 161:481–490

    Article  PubMed  Google Scholar 

  • Granath G, Strengbom J, Rydin H (2010) Rapid ecosystem shifts in peatlands: linking plant physiology and succession. Ecology 91:3047–3056

    Article  PubMed  Google Scholar 

  • Granath G, Strengbom J, Rydin H (2012) Direct physiological effects of nitrogen on Sphagnum a greenhouse experiment. Funct Ecol 26:353–364

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537

    Article  CAS  PubMed  Google Scholar 

  • Gunnarsson U, Granberg G, Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytol 163:349–359

    Article  PubMed  Google Scholar 

  • Hájek T (2014) Physiological ecology of peatland bryophytes. In: Hanson DT and Rice SK (Eds.), Photosynthesis in bryophytes and early land plants. Advances in photosynthesis and respiration springer science+business media dordrecht, 37: 233–252

  • Hájek T, Adamec L (2009) Mineral nutrient economy in competing species of Sphagnum mosses. Ecol Res 24:291–302

    Article  CAS  Google Scholar 

  • Hájek T, Beckett RP (2007) Effect of water content components on desiccation and recovery in Sphagnum mosses. Ann Bot 101:165–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hájek T, Tuittila ES, Ilomets M, Laiho R (2009) Light responses of mire mosses—a key to survival after water-level drawdown? Oikos 118:240–250

    Article  Google Scholar 

  • Hájek M, Plesková Z, Syrovátka V et al (2014) Patterns in moss element concentrations in fens across species, habitats, and regions. Perspect Plant Ecol Evol Sys 16:203–218

    Article  Google Scholar 

  • Hamard S, Robroek BJM, Allard PM et al (2019) Effects of Sphagnum leachate on competitive Sphagnum microbiome depend on species and time. Front Microbiol 10:2042

    Article  PubMed  PubMed Central  Google Scholar 

  • Haraguchi A, Yamada N (2011) Temperature dependency of photosynthesis of Sphagnum spp. distributed in the warm-temperate and the cool-temperate mires of Japan. Am J Plant Sci 02:716–725

    Article  CAS  Google Scholar 

  • Harley PC, Tenhunen JD, Murray KJ, Beyers J (1989) Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79:251–259

    Article  CAS  PubMed  Google Scholar 

  • Heeschen V, Matlok J, Schrader S, Rudolph H (1996) Asparagine catabolism in bryophytes: purification and characterization of two L-asparaginase isoforms from Sphagnum fallax. Physiol Plant 97:402–410

    Article  CAS  Google Scholar 

  • Heeschen V, Gerendás J, Richter CP, Rudolph H (1997) Glutamate dehydrogenase of Sphagnum. Phytochemistry 45:881–887

    Article  CAS  Google Scholar 

  • Heijmans MM, Berendse F, Arp WJ et al (2001) Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–279

    Article  CAS  Google Scholar 

  • Heijmans MM, Klees H, Berendse F (2002a) Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos 97:415–425

    Article  CAS  Google Scholar 

  • Heijmans MM, Klees H, De Visser W, Berendse F (2002b) Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecol 162:123–134

    Article  Google Scholar 

  • Hyyryläinen A, Turunen M, Rautio P, Huttunen S (2018) Sphagnum mosses in a changing UV-B environment: a review. Perspect Plant Ecol Evol Sys 33:1–8

    Article  Google Scholar 

  • Ingerpuu N, Vellak K (2013) Growth depends on neighbours: experiments with three Sphagnum L. species. J Bryol 35:27–32

    Article  Google Scholar 

  • Jassey VEJ, Signarbieux C (2019) Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Glob Change Biol 25:3859–3870

    Article  Google Scholar 

  • Jassey VEJ, Chiapusio G, Binet P et al (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob Change Biol 19:811–823

    Article  Google Scholar 

  • Jauhiainen J, Silvola J, Tolonen K, Vasander H (1997) Response of Sphagnum fuscum to water levels and CO2 concentration. J Bryol 19:391–400

    Article  Google Scholar 

  • Jauhiainen J, Wallén B, Malmer N (1998a) Potential NH4+ and NO3- uptake in seven Sphagnum species. New Phytol 138:287–293

    Article  CAS  PubMed  Google Scholar 

  • Jauhiainen J, Vasander H, Silvola J (1998b) Nutrient concentration in shape Sphagna at increased N-deposition rates and raised atmospheric CO2 concentrations. Plant Ecol 138:149–160

    Article  Google Scholar 

  • Johnson MG, Granath G, Tahvanainen T et al (2015) Evolution of niche preference in Sphagnum peat mosses. Evolution 69:90–103

    Article  PubMed  Google Scholar 

  • Juutinen S, Moore TR, Laine AM et al (2016) Responses of the mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: growth, ground cover, and CO2 exchange. Botany 94:127–138

    Article  CAS  Google Scholar 

  • Kahl S, Berswordt-Wallrabe PV, Heeschen V, Schmidt H, Rudolph H (1998) Plastidic L-glutamine synthetase: a membrane-bound enzyme in Sphagnum fallax. J Plant Physiol 153:270–275

    Article  CAS  Google Scholar 

  • Kangas L, Maanavilja L, Hájek T et al (2014) Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests. Ecol Evol 4:381–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Karunen P, Ekman R, Kälviäinen E (1983) Content of polymerized lipids in stems and leafy branches of Sphagnum fuscum. Z Pflanzenphysiol 112:309–313

    Article  CAS  Google Scholar 

  • Kļaviņa L, Bikovens O, Steinberga I, Maksimova V, Eglite L (2012) Characterization of chemical composition of some bryophytes common in Latvia. Environ Exp Biol 10:27–34

    Google Scholar 

  • Kļaviņa L, Springe G, Steinberga I, Mezaka A, Ievinsh G (2018) Seasonal changes of chemical composition in boreonemoral moss species. Environ Exp Bot 16:9–19

    Article  Google Scholar 

  • Korrensalo A, Hájek T, Vesala T, Mehtätalo L, Tuittila ES (2016) Variation in photosynthetic properties among bog plants. Botany 94:1127–1139

    Article  CAS  Google Scholar 

  • Koskimies-Soininen K, Nyberg H (1991) Effects of temperature and light on the glycolipids of Sphagnum fimbriatum. Phytochemistry 30:2529–2536

    Article  CAS  Google Scholar 

  • Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kox MAR, Aalto SL, Penttilä T et al (2018) The Influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. AMB Express 8(1):76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krebs M, Gaudig G, Joosten H (2016) Record growth of Sphagnum papillosum in Georgia (Transcaucasus): rain frequency, temperature and microhabitat as key drivers in natural bogs. Mires Peat 18:1–16

    Google Scholar 

  • Küttim M, Küttim L, Ilomets M, Laine AM (2020) Controls of Sphagnum growth and the role of winter. Ecol Res 35:219–234

    Article  CAS  Google Scholar 

  • Laine AM, Juurola E, Hájek T, Tuittila ES (2011) Sphagnum growth and ecophysiology during mire succession. Oecologia 167:1115–1125

    Article  PubMed  Google Scholar 

  • Laing CG, Granath G, Belyea LR, Allton KE, Rydin H (2014) Tradeoffs and scaling of functional traits in Sphagnum as drivers of carbon cycling in peatlands. Oikos 123:817–828

    Article  Google Scholar 

  • Li T-T, Lei Y, Dai C, Yang L-F, Li Z-Q, Wang Z-X (2018) Effects of both substrate and nitrogen and phosphorous fertilizer on Sphagnum palustre growth in subtropical high-mountain regions and implications for peatland recovery. Wetl Ecol Manag 26:651–663

    Article  CAS  Google Scholar 

  • Ligrone R, Carafa A, Duckett J, Renzaglia K, Ruel K (2008) Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Syst Evol 270:257–272

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F (2003) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345

    Article  CAS  PubMed  Google Scholar 

  • Limpens J, Tomassen HBM, Berendse F (2003) Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. J Bryol 25:83–90

    Article  Google Scholar 

  • Limpens J, Granath G, Aerts R et al (2011) Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytol 195:408–418

    Article  Google Scholar 

  • Lindo Z, Nilsson MC, Gundale MJ (2013) Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Change Biol 19:2022–2035

    Article  Google Scholar 

  • Liu Y, Johnson MG, Simon JC et al (2020) Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat Commun 10:1485

    Article  CAS  Google Scholar 

  • Ma JZ, Bu ZJ, Zheng XX, Ge JL, Wang SZ (2015) Effects of shading on relative competitive advantage of three species of Sphagnum. Mires Peat 16:1–17

    Google Scholar 

  • Manninen S, Woods C, Leith ID, Sheppard LJ (2011) Physiological and morphological effects of long-term ammonium or nitrate deposition on the green and red (shade and open grown) Sphagnum capillifolium. Environ Exp Bot 72:140–148

    Article  CAS  Google Scholar 

  • Marschall M (2010) Photosynthetic responses, carbohydrate composition and invertase activity in fructan accumulating bryophytes (Porella platyphylla and Sphagnum flexuosum) under different environmental conditions (carbohydrate treatments, dark starvation, low temperature, desiccation). Acta Biol Hung 61:120–129

    Article  CAS  PubMed  Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maseyk KS, Green TGA, Klinac D (1999) Photosynthetic responses of New Zealand Sphagnum species. N Z J Bot 37:155–165

    Article  Google Scholar 

  • Mitchell EA, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat JM (2002) Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J Ecol 90:529–533

    Article  CAS  Google Scholar 

  • Morgan SM, Lee JA, Ashenden TW (1992) Effects of nitrogen oxides on nitrate assimilation in bryophytes. New Phytol 120:89–97

    Article  CAS  Google Scholar 

  • Mörsky SK, Haapala JK, Rinnan R et al (2011) Minor effects of long-term ozone exposure on boreal peatland species Eriophorum vaginatum and Sphagnum papillosum. Environ Exp Bot 72:455–463

    Article  CAS  Google Scholar 

  • Murray KJ, Harley PC, Beyers J et al (1989) Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79:244–250

    Article  CAS  PubMed  Google Scholar 

  • Newman TR, Wright N, Wright B, Sjögersten S (2018) Interacting effects of elevated atmospheric CO2 and hydrology on the growth and carbon sequestration of Sphagnum moss. Wetl Ecol Manag 26:763–774

    Article  CAS  Google Scholar 

  • Niemi R, Martikainen PJ, Silvola J, Holopainen T (2002a) Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms. Sci Total Environ 289:1–12

    Article  CAS  PubMed  Google Scholar 

  • Niemi R, Martikainen PJ, Silvola J, Sonninen E, Wulff A, Holopainen T (2002b) Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. New Phytol 156:509–515

    Article  PubMed  Google Scholar 

  • Norby RJ, Childs J, Hanson PJ, Warren JM (2019) Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecol Evol 9:12571–12585

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulissen MPCP, Van Der Ven PJM, Dees AJ, Bobbink R (2004) Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytol 164:451–458

    Article  Google Scholar 

  • Potter L, Foot JP, Caporn SJM, Lee JA (1996) The effects of long-term elevated ozone concentrations on the growth and photosynthesis of Sphagnum recurvum and Polytrichum commune. New Phytol 134:649–656

    Article  CAS  PubMed  Google Scholar 

  • Proctor MCF, Bates JW (2018) Chlorophyll-fluorescence measurements in bryophytes: evidence for three main types of light-curve response. J Bryol 40:1–11

    Article  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ et al (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Rasmussen S, Peters G, Rudolph H (1995) Regulation of phenylpropanoid metabolism by exogenous precursors in axenic cultures of Sphagnum fallax. Physiol Plant 95:83–90

    Article  CAS  Google Scholar 

  • Rastogi A, Antala M, Gabka M, Rosadzinski S, Strozecki M, Brestic M, Juszczak R (2020) Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Sci Rep 10:85–92

    Article  CAS  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99:46–57

    CAS  Google Scholar 

  • Rice SK, Giles L (1996) The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum. Plant Cell Environ 19:118–124

    Article  CAS  Google Scholar 

  • Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374

    Article  PubMed  Google Scholar 

  • Rinnan R, Saarnio S, Haapala JK et al (2013) Boreal peatland ecosystems under enhanced UV-B radiation and elevated tropospheric ozone concentration. Environ Exp Bot 90:43–52

    Article  CAS  Google Scholar 

  • Riutta T, Laine J, Tuittila E (2007) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  CAS  Google Scholar 

  • Robroek BJM, Limpens J, Breeuwer A, Schouten MGC (2007) Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecol 190:97–107

    Article  Google Scholar 

  • Robroek BJM, Schouten MGC, Limpens J, Berendse F, Poorter H (2009) Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob Change Biol 15:680–691

    Article  Google Scholar 

  • Rudolph H, Voigt JU (1986) Effects of NH4+-N and NO3N on growth and metabolism of Sphagnum magellanicum. Physiol Plant 66:339–343

    Article  Google Scholar 

  • Rydin H (1993) Mechanisms of interactions among Sphagnum species along water-level gradients. Adv Bryol 5:153–185

    Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, UK

    Book  Google Scholar 

  • Saxena A, Saxena A (2012) Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml. Environ Monit Assess 184:4097–4103

    Article  CAS  PubMed  Google Scholar 

  • Schipperges B, Rydin H (1998) Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol 140:677–684

    Article  CAS  PubMed  Google Scholar 

  • Shaw AJ, Cox CJ, Boles SB (2003) Polarity of peatmoss (Sphagnum) evolution: who says bryophytes have no roots? A J Bot 90:1777–1787

    Article  Google Scholar 

  • Shaw AJ, Devos N, Cox CJ et al (2010) Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling? Mol Phylogenet Evol 55:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Shaw AJ, Devos N, Liu Y et al (2016) Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Ann Bot 118:185–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw AJ, Carter BE, Aguero B, Pinheiro da Costa D, Crowl AA (2018) Range change evolution of peat mosses (Sphagnum) within and between climate zones. Glob Change Biol 25:108–120

    Article  Google Scholar 

  • Silvola J (1990) Combined effects of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum. Ecography 13:224–228

    Article  Google Scholar 

  • Smolders AJP, Tomassen HBM, Pijnappel HW, Lamers LPM, Roelofs JGM (2001) Substrate-derived CO2 is important in the development of Sphagnum spp. New Phytol 152:325–332

    Article  Google Scholar 

  • Sonesson M, Carlsson BA, Callaghan TV et al (2002) Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change. Oikos 99:151–160

    Article  Google Scholar 

  • Soriano G, Del-Castillo-Alonso MA, Monforte L, Núñez-Olivera E, Martínez-Abaigar J (2019) Phenolic compounds from different bryophyte species and cell compartments respond specifically to ultraviolet radiation, but not particularly quickly. Plant Physiol Biochem 134:137–144

    Article  CAS  PubMed  Google Scholar 

  • Taylor ES, Levy PE, Gray A (2017) The recovery of Sphagnum capillifolium following exposure to temperatures of simulated moorland fires: a glasshouse experiment. Plant Ecol Divers 10(1):77–88

    Article  Google Scholar 

  • Turetsky MR, Crow SE, Evans RJ, Vitt DH, Wieder RK (2008) Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. J Ecol 96:1297–1305

    Article  Google Scholar 

  • Turetsky MR, Bond-Lamberty B, Euskirchen E et al (2012) The resilience and functional role of moss in boreal and arctic ecosystems: Tansley Review. New Phytol 196:49–67

    Article  CAS  PubMed  Google Scholar 

  • Tutschek R (1979) Quantitative determination of sphagnum acid from Sphagnum magellanicum Brid. Z Pflanzenphysiol 94:317–324

    Article  CAS  Google Scholar 

  • Van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  PubMed  Google Scholar 

  • Van den Elzen E, Bengtsson F, Fritz C, Rydin H, Lamers LPM (2020) Variation in symbiotic N2 fixation rates among Sphagnum mosses. PLoS ONE

  • Van Der Heijden E, Jauhiainen J, Silvola J, Vasander H, Kuiper PJ (2000a) Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum. J Bryol 22:175–182

    Article  Google Scholar 

  • Van Der Heijden E, Verbeek SK, Kuiper PJ (2000b) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Glob Change Biol 6:201–212

    Article  Google Scholar 

  • Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in Sphagnum. Acta Bot Neerl 46:117–130

    Article  CAS  Google Scholar 

  • Vicherova E, Glinwood R, Hajek T, Smilauer P, Ninkovic V (2020) Bryophytes can recognize their neighbours through volatile organic compounds. Nat Sci Rep 10:7405

    CAS  Google Scholar 

  • Vitt DH, Wieder K, Halsey LA, Turetsky M (2013) Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatland in Alberta, Canada. Bryol 106(2):235–245

    Article  Google Scholar 

  • Wagner DJ, Titus JE (1984) Comparative desiccation tolerance of two Sphagnum mosses. Oecologia 62:182–187

    Article  PubMed  Google Scholar 

  • Wang Z, Liu X, Bao W (2016) Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species. Oecologia 180:359–369

    Article  PubMed  Google Scholar 

  • Weston LA, Skoneczny D, Weston PA, Weidenhamer JD (2015) Metabolic profiling: an overview –new approaches for the detection and functional analysis of biologically active secondary plant products. J Allelochem Interact 2:15–27

    Google Scholar 

  • Weston DJ, Turetsky MR, Johnson MG et al (2017) The sphagnome project: enabling ecological and evolutionary insights through a genus-Level sequencing project. New Phytol 217:16–25

    Article  PubMed  Google Scholar 

  • Wiedermann MM, Gunnarsson U, Ericson L, Nordin A (2009) Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition. New Phytol 181:208–217

    Article  CAS  PubMed  Google Scholar 

  • Williams TG, Flanagan LB (1998) Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium. Plant Cell Environ 21:555–564

    Article  CAS  Google Scholar 

  • Woodin SJ, Lee JA (1987) The effects of nitrate, ammonium and temperature on nitrate reductase activity in Sphagnum species. New Phytol 105:103–115

    Article  CAS  PubMed  Google Scholar 

  • Woodin S, Press MC, Lee JA (1985) Nitrate reductase activity in Sphagnum fuscum in relation to wet deposition of nitrate from the atmosphere. New Phytol 99:381–388

    Article  CAS  Google Scholar 

  • Yazaki T, Yabe K (2012) Effects of snow-load and shading by vascular plants on the vertical growth of hummocks formed by Sphagnum papillosum in a mire of Northern Japan. Plant Ecol 213:1055

    Article  Google Scholar 

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Article  CAS  Google Scholar 

Download references

Funding

Funding of this research was provided by the SphagnAndro CNRS EC2CO projet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Chiapusio.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest.

Ethics approval

The manuscript has not been submitted in another journal. The submitted work is original and have not been published elsewhere in any form or language (partially or in full). The manuscript have not be split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. Results are presented clearly, honestly, and without fabrication, falsification or inappropriate data manipulation (including image based manipulation). Authors adhere to discipline-specific rules for acquiring, selecting and processing data. No data, text, or theories by others are presented as if they were the author’s own (‘plagiarism’).

Consent to participate

All the authors—G Chiapusio P Binet C Bertheau P Priault,– agreed the submission. If accepted, it will not be published elsewhere in the same form, in English or in any language, without the written consent of the Publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Olivier P. Thomas

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1. General trends of responses of capitulum biomass, length increment, photosynthesis and respiration of Sphagnum species belonging to Acutifolia, Cuspidata and Sphagnum subgenera to (a) elevated temperatures, (b) low moisture, (c) elevated N and (d) elevated CO2, including laboratory (Lab) and in situ (In situ) studies. The y axis represents the Sphagnum response to the corresponding environmental change: a negative effect is represented by black boxes, a positive effect by light grey boxes, no significant effect by hatched grey boxes and no available data by no visible boxes. The number of Sphagnum species studied is indicated for each box. Details of each value for each parameter are presented in Tables S3, S4 and S5.

Supplementary file1 (JPG 195 KB)

Supplementary file2 (DOCX 40 KB)

Supplementary file3 (DOCX 43 KB)

Supplementary file4 (DOCX 21 KB)

Supplementary file5 (DOCX 25 KB)

Supplementary file6 (DOCX 24 KB)

Supplementary file7 (DOCX 25 KB)

Supplementary file8 (DOCX 22 KB)

Supplementary file9 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiapusio, G., Binet, P., Bertheau, C. et al. Sphagnum physiological responses to elevated temperature, nitrogen, CO2 and low moisture in laboratory and in situ microhabitats: a review. Aquat Ecol 56, 429–445 (2022). https://doi.org/10.1007/s10452-021-09924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09924-8

Keywords

Navigation