Skip to main content
Log in

Oxygen absorption and desorption properties of YBaCo4O7+δ monolithic oxygen carrier in the fixed-bed reactor

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The technology of chemical looping air separation, with the characteristics of simple operation, low cost, and low energy consumption, separates oxygen from air with the oxygen carrier. In this work, reaction properties of monolithic oxygen carriers were investigated in a fixed-bed apparatus, with the consideration of the reactor temperature, oxygen concentration, and reaction gas flow. The XRD results showed that active phase, Al2O3, and cordierite cannot react with each other in calcination processing. The SEM results showed that the micromorphology of oxygen carrier was loaded on cordierite honeycomb uniformly with sphere or sphere-like particles. Oxygen carriers show a faster oxygen release rate and a slower oxygen intake rate. With increasing of absorption temperature, oxygen concentration of inlet gas, and desorption temperature, the reaction rate per unit mass increases. With increasing of gas flow rate, the reaction rate per unit mass decreases. The maximum value of the reaction rate per unit mass was obtained by Y0.95Ti0.05BaCo4O7+δ monolith sample. Samples substituted with Dy element showed fine performance of stability, as Dy substitution causes more serious local lattice distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Moghtaderi, Energy Fuels, 24(1), 190 (2010).

    Article  CAS  Google Scholar 

  2. H. Song, K. Shah, E. Doroodchi and B. Moghtaderi, Energy Fuels, 28(1), 163 (2014).

    Article  CAS  Google Scholar 

  3. L. F. DE Diego, F. Gacía-labiano, J. Adáneza, P. Gayán, A. Abad, B. M. Corbella and J. M. Palacios, Fuel, 83(13), 17490 (2004).

    Article  Google Scholar 

  4. N. Son, J. Y. Do, N. Park, U. S. Kim, J. Baek, D. Lee, H. Ryu and M. Kang, Korean J. Chem. Eng., 36(12), 1971 (2019).

    Article  CAS  Google Scholar 

  5. H. J. Ge, L. H. Shen, F. Feng and S. X. Jiang, Appl. Therm. Eng., 85, 52 (2015).

    Article  CAS  Google Scholar 

  6. Y. Gao, J. Xiao, J. D. Ye and Y. T. Shen, Korean J. Chem. Eng., 37(1), 54 (2020).

    Article  CAS  Google Scholar 

  7. T. Mattisson, A. Lyngfelt and H. Leion, Int. J. Greenhouse Gas Control., 3(1), 11 (2009).

    Article  CAS  Google Scholar 

  8. R. Siriwardane, H. J. Tian, G. Richards, T. Simonyi and P. James, Energy Fuels, 23(8), 3885 (2009).

    Article  CAS  Google Scholar 

  9. H. Tian and Q. Guo, Chem. Eng. Res. Des., 89(9), 1524 (2011).

    Article  CAS  Google Scholar 

  10. M. Rydén, A. Lyngfelt, T. Mattisson, D. Chen, A. Holmen and E. Bjørgum, Int. J. Greenhouse Gas Control, 2(1), 21 (2008).

    Article  Google Scholar 

  11. L. Nalbandian, A. Evdou and V. Zaspalis, Int. J. Hydrogen Energ., 36(11), 6657 (2011).

    Article  CAS  Google Scholar 

  12. B. Y. Li, W. Zhang, Y. Q. Qian and Z. Y. Wang, Korean J. Chem. Eng., 37(4), 688 (2020).

    Article  CAS  Google Scholar 

  13. Y. R. Gwak, J. H. Yun, S. I. Keel and S. H. Lee, Korean J. Chem. Eng., 37(11), 1878 (2020).

    Article  CAS  Google Scholar 

  14. T. Mattisson, A. Lyngfelt and H. Leion, Int. J. Greenhouse Gas Control, 3(1), 11 (2009).

    Article  CAS  Google Scholar 

  15. M. Arjmand, A. Azad, H. Leion, A. Lyngfelt and T. Mattisson, Energy Fuels, 25(11), 5493 (2011).

    Article  CAS  Google Scholar 

  16. Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, Catal. Today, 74(3–4), 225 (2007).

    Google Scholar 

  17. J. Kašpar and P. Fornasiero, J. Solid State Chem., 171(1–2), 19 (2003).

    Article  Google Scholar 

  18. M. Karppinen, H. Yanauchi and S. Otani, Chem. Mater., 18(2), 490 (2006).

    Article  CAS  Google Scholar 

  19. S. Kadota, M. Kappinen, T. Motohashi and H. Yamauchi, Chem. Mater., 20(20), 6378 (2008).

    Article  CAS  Google Scholar 

  20. S. Wang, H. S. Hao, B. F. Zhu, J. F. Jia and X. Hu, J. Mater. Sci., 43(15), 5385 (2008).

    Article  CAS  Google Scholar 

  21. S. M. Zhang, MA Dissertation, ZhengZhou University (2011).

  22. L. J. Guo, MA Dissertation, ZhengZhou University (2005).

  23. L. P. Kozeeva, M. Y. Kameneva, A. N. Lavrov and N. V. Podberezskaya, Inorg. Mater., 49(6), 626 (2013).

    Article  CAS  Google Scholar 

  24. O. Parkkima, H. Yamauchi and M. Karppinen, Chem. Mater., 25(4), 599 (2013).

    Article  CAS  Google Scholar 

  25. M. Valldor, Solid State Sci., 7(10), 1163 (2005).

    Article  CAS  Google Scholar 

  26. L. M. Hou, Q. B. Yu, K. Wang, T. Wang, F. Yang and S. Zhang, J. Therm. Anal. Calorim., 49(1), 317 (2019).

    Article  Google Scholar 

  27. L. M. Hou, Q. B. Yu, K. Wang, S. Zhang, Q. Qin and F. Yang, Korean J. Chem. Eng., 36(1), 84 (2019).

    Article  CAS  Google Scholar 

  28. A. D. Qi, S. D. Wang, G. Z. Fu, C. J. Ni and D. Y. Wu, Appl. Catal. A: Gen., 281(1–2), 233 (2005).

    Article  CAS  Google Scholar 

  29. B. B. Shi and Z. D. Jiang, Nat. Gas Chem. Ind., 38(3), 11 (2013).

    CAS  Google Scholar 

  30. Wang, K. MA Diss., Shanghai Jiaotong University (2009).

  31. S. Cimino, L. Lisi, R. Pirone, G. Russo and M. Turco, Catal. Today, 59(1), 19 (2000).

    Article  CAS  Google Scholar 

  32. K. Wang, Q. B. Yu, Q. Qin, Z. L. Zuo and T. W. Wu, Chem. Eng. J., 287, 292 (2016).

    Article  CAS  Google Scholar 

  33. Q. Liu, J. J. Shi, S. D. Zheng, M. N. Tao, Y. He and Y. Shi, Ind. Eng. Chem. Res., 53(29), 11677 (2014).

    Article  CAS  Google Scholar 

  34. L. M. Hou, Q. B. Yu, T. Wang, K. Wang, Q. Qin and Z. F. Qi, Korean J. Chem. Eng., 35(3), 626 (2018).

    Article  CAS  Google Scholar 

  35. A. A. Yaremchenko, M. V. Patrakeev, V. V. Kharton, F. M. B. Marques, I. A. Leonidov and V. L. Kozhevnikov, Solid State Sci., 6(4), 357 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Natural Science Foundation of Inner Mongolia (Grant No. 2020BS05030, 2019ZD13), National Key Research and Development Project (Grant No. 2020 YFC1909102), and National Natural Science Foundation of China (Grant No. 51866013, 51576035). Thanks for Start-up Funds for Talent Introduction and Scientific Research of Institutions in Inner Mongolia Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Hou.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Qiao, C., Yu, Q. et al. Oxygen absorption and desorption properties of YBaCo4O7+δ monolithic oxygen carrier in the fixed-bed reactor. Korean J. Chem. Eng. 39, 695–705 (2022). https://doi.org/10.1007/s11814-021-0893-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0893-2

Keywords

Navigation