Skip to main content

Advertisement

Log in

Evaluation of a blood-based geroscience biomarker index in a randomized trial of caloric restriction and exercise in older adults with heart failure with preserved ejection fraction

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Intermediate endpoints are needed to evaluate the effect of interventions targeting the biology of aging in clinical trials. A working group identified five blood-based biomarkers that may serve such a purpose as an integrated index. We evaluated the responsiveness of the panel to caloric restriction or aerobic exercise in the context of a randomized clinical trial conducted in patients with heart failure with preserved ejection fraction (HFpEF) with obese phenotype who were predominantly female. Obese HFpEF is highly prevalent in women, and is a geriatric syndrome whose disease pathology is driven by non-cardiac factors and shared drivers of aging. We measured serum Interleukin-6, TNF-α-receptor-I, growth differentiating factor-15, cystatin C, and N-terminal pro-b-type natriuretic peptide at baseline and after 20 weeks in older participants with stable obese HFpEF participating in a randomized, controlled, 2 × 2 factorial trial of caloric restriction and/or aerobic exercise. We calculated a composite biomarker index, summing baseline quintile scores for each biomarker, and analyzed the effect of the interventions on the index and individual biomarkers and their associations with changes in physical performance. This post hoc analysis included 88 randomized participants (71 women [81%]). The mean ± SD age was 66.6 ± 5.3 years, and body mass index (BMI) was 39.3 ± 6.3 kg/m2. Using mixed models, mean values of the biomarker index improved over 20 weeks with caloric restriction (− 0.82 \(\pm\) 0.58 points, p = 0.05), but not with exercise (− 0.28 \(\pm\) 0.59 points, p = \(0.50\)), with no evidence of an interaction effect of CR \(\times\) EX \(\times\) time (p = 0.80) with adjustment for age, gender, and BMI. At baseline, the biomarker index was inversely correlated with 6-min walk distance, scores on the short physical performance battery, treadmill test peak workload and exercise time to exhaustion (all \(\rho\) s = between − 0.21 and − 0.24). A reduction in the biomarker index was also associated with increased 4-m usual walk speed (\(\rho\) s =  − 0.31). Among older patients with chronic obese HFpEF, caloric restriction improved a biomarker index designed to reflect biological aging. Moreover, the index was associated with physical performance and exercise tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Serum biomarker data will be made available.

Code availability

SAS statistical software code will be made available.

References

  1. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060–5. https://doi.org/10.1016/j.cmet.2016.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newman JC, Milman S, Hashmi SK, Austad SN, Kirkland JL, Halter JB, Barzilai N. Strategies and challenges in clinical trials targeting human aging. J Gerontol A Biol Sci Med Sci. 2016;71(11):1424–34. https://doi.org/10.1093/gerona/glw149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Justice JN, Niedernhofer L, Robbins PD, Aroda VR, Espeland MA, Kritchevsky SB, Kuchel GA, Barzilai N. Development of clinical trials to extend healthy lifespan. Cardiovasc Endocrinol Metab. 2018;7(4):80–3. https://doi.org/10.1097/XCE.0000000000000159.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989.

  5. LeBrasseur NK, de Cabo R, Fielding R, Ferrucci L, Rodriguez-Manas L, Vina J, Vellas B. Identifying biomarkers for biological age: geroscience and the ICFSR Task Force. J Frailty Aging. 2021;10(3):196–201. https://doi.org/10.14283/jfa.2021.5.

  6. Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, Barzilai N, Kuchel GA. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience. 2018;40(5–6):419–36. https://doi.org/10.1007/s11357-018-0042-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, Eggebeen J, Nicklas BJ. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46. https://doi.org/10.1001/jama.2015.17346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Upadhya B, Pisani B, Kitzman DW. Evolution of a geriatric syndrome: pathophysiology and treatment of heart failure with preserved ejection fraction. J Am Geriatr Soc. 2017;65(11):2431–40. https://doi.org/10.1111/jgs.15141.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pandey A, Shah SJ, Butler J, Kellogg DL Jr, Lewis GD, Forman DE, Mentz RJ, Borlaug BA, Simon MA, Chirinos JA, Fielding RA, Volpi E, Molina AJA, Haykowsky MJ, Sam F, Goodpaster BH, Bertoni AG, Justice JN, White JP, Ding J, Hummel SL, LeBrasseur NK, Taffet GE, Pipinos II, Kitzman D. Exercise intolerance in older adults with heart failure with preserved ejection fraction: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(11):1166–87. https://doi.org/10.1016/j.jacc.2021.07.014.

    Article  PubMed  Google Scholar 

  10. Gurwitz JH, Magid DJ, Smith DH, Goldberg RJ, McManus DD, Allen LA, Saczynski JS, Thorp ML, Hsu G, Sung SH, Go AS. Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction. Am J Med. 2013;126(5):393–400. https://doi.org/10.1016/j.amjmed.2012.10.022.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aurigemma GP, Gottdiener JS, Shemanski L, Gardin J, Kitzman D. Predictive value of systolic and diastolic function for incident congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol. 2001;37(4):1042–8. https://doi.org/10.1016/s0735-1097(01)01110-x.

    Article  CAS  PubMed  Google Scholar 

  12. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9. https://doi.org/10.1056/NEJMoa052256.

    Article  CAS  PubMed  Google Scholar 

  13. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation. 2018;138(2):198–205. https://doi.org/10.1161/CIRCULATIONAHA.118.034271.

    Article  PubMed  Google Scholar 

  14. Pepine CJ, Merz CNB, El Hajj S, Ferdinand KC, Hamilton MA, Lindley KJ, Nelson MD, Quesada O, Wenger NK, Fleg JL, American College of Cardiology Committee on Cardiovascular Disease in W. Heart failure with preserved ejection fraction: similarities and differences between women and men. Int J Cardiol. 2020;304:101–8. https://doi.org/10.1016/j.ijcard.2020.01.003.

  15. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reddy YNV, Lewis GD, Shah SJ, Obokata M, Abou-Ezzedine OF, Fudim M, Sun JL, Chakraborty H, McNulty S, LeWinter MM, Mann DL, Stevenson LW, Redfield MM, Borlaug BA. Characterization of the obese phenotype of heart failure with preserved ejection fraction: a RELAX trial ancillary study. Mayo Clin Proc. 2019;94(7):1199–209. https://doi.org/10.1016/j.mayocp.2018.11.037.

    Article  PubMed  Google Scholar 

  17. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288(17):2144–50. https://doi.org/10.1001/jama.288.17.2144.

    Article  PubMed  Google Scholar 

  18. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E, Pennington CT. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295(13):1539–48. https://doi.org/10.1001/jama.295.13.1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lettieri-Barbato D, Giovannetti E, Aquilano K. Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging (Albany NY). 2016;8(12):3341–55. https://doi.org/10.18632/aging.101122.

  20. Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney RM. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med. 1995;333(18):1190–5. https://doi.org/10.1056/NEJM199511023331806.

    Article  CAS  PubMed  Google Scholar 

  21. Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. J Gerontol A Biol Sci Med Sci. 2017. https://doi.org/10.1093/gerona/glx096.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shaver LN, Beavers DP, Kiel J, Kritchevsky SB, Beavers KM. Effect of intentional weight loss on mortality biomarkers in older adults with obesity. J Gerontol A Biol Sci Med Sci. 2019;74(8):1303–9. https://doi.org/10.1093/gerona/gly192.

    Article  CAS  PubMed  Google Scholar 

  23. Crimmins EM, Thyagarajan B, Kim JK, Weir D, Faul J. Quest for a summary measure of biological age: the health and retirement study. Geroscience. 2021;43(1):395–408. https://doi.org/10.1007/s11357-021-00325-1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sanders JL, Arnold AM, Boudreau RM, Hirsch CH, Kizer JR, Kaplan RC, Cappola AR, Cushman M, Jacob ME, Kritchevsky SB, Newman AB. Association of biomarker and physiologic indices with mortality in older adults: cardiovascular health study. J Gerontol A Biol Sci Med Sci. 2019;74(1):114–20. https://doi.org/10.1093/gerona/gly075.

    Article  CAS  PubMed  Google Scholar 

  25. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. https://doi.org/10.18632/aging.101414.

  26. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://doi.org/10.18632/aging.101684.

  27. Belsky DW, Caspi A, Arseneault L, Baccarelli A, Corcoran DL, Gao X, Hannon E, Harrington HL, Rasmussen LJ, Houts R, Huffman K, Kraus WE, Kwon D, Mill J, Pieper CF, Prinz JA, Poulton R, Schwartz J, Sugden K, Vokonas P, Williams BS, Moffitt TE. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. Elife. 2020;9. https://doi.org/10.7554/eLife.54870.

  28. Tanaka T, Basisty N, Fantoni G, Candia J, Moore AZ, Biancotto A, Schilling B, Bandinelli S, Ferrucci L. Plasma proteomic biomarker signature of age predicts health and life span. Elife. 2020;9. https://doi.org/10.7554/eLife.61073.

  29. Sathyan S, Ayers E, Gao T, Weiss EF, Milman S, Verghese J, Barzilai N. Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell. 2020;19(11): e13250. https://doi.org/10.1111/acel.13250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition. 1989;5(3):155–71; discussion

  31. Richardson A, Austad SN, Ikeno Y, Unnikrishnan A, McCarter RJ. Significant life extension by ten percent dietary restriction. Ann N Y Acad Sci. 2016;1363:11–7. https://doi.org/10.1111/nyas.12982.

    Article  CAS  PubMed  Google Scholar 

  32. Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986;116(4):641–54. https://doi.org/10.1093/jn/116.4.641.

    Article  CAS  PubMed  Google Scholar 

  33. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063. https://doi.org/10.1038/ncomms14063. nutritional genomics. G.S.R. is Chief Executive Officer of GeroScience, Inc. and Vice President of Prolongevity Technologies. D.K.I. serves as Chief Scientific Officer for GeroScience, Inc., and Prolongevity Technologies, Inc. D.B.A. serves on the board of IKEA and has received consulting fees from multiple government, not for profit, and for profit organizations with interests in obesity and nutrition. None of these activities benefit directly from this research and no competing financial interests are declared. The remaining authors declare no competing financial interests.

  34. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4. https://doi.org/10.1126/science.1173635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simpson FR, Pajewski NM, Nicklas B, Kritchevsky S, Bertoni A, Ingram F, Ojeranti D, Espeland MA, Indices for Accelerated Aging in O, Diabetes Ancillary Study of the Action for Health in Diabetes T. Impact of multidomain lifestyle intervention on frailty through the lens of deficit accumulation in adults with type 2 diabetes mellitus. J Gerontol A Biol Sci Med Sci. 2020;75(10):1921–7. https://doi.org/10.1093/gerona/glz197.

  36. Espeland MA, Gaussoin SA, Bahnson JL, Vaughan EM, Knowler WC, Simpson FR, Hazuda HP, Johnson KC, Munshi MN, Coday M, Pi-Sunyer X. Impact of an 8-year intensive lifestyle intervention on an index of multimorbidity. J Am Geriatr Soc. 2020;68(10):2249–56. https://doi.org/10.1111/jgs.16672.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Caristia S, Vito M, Sarro A, Leone A, Pecere A, Zibetti A, Filigheddu N, Zeppegno P, Prodam F, Faggiano F, Marzullo P. Is caloric restriction associated with better healthy aging outcomes? A systematic review and meta-analysis of randomized controlled trials. Nutrients. 2020;12(8). https://doi.org/10.3390/nu12082290.

  38. Kritchevsky SB, Beavers KM, Miller ME, Shea MK, Houston DK, Kitzman DW, Nicklas BJ. Intentional weight loss and all-cause mortality: a meta-analysis of randomized clinical trials. PLoS ONE. 2015;10(3): e0121993. https://doi.org/10.1371/journal.pone.0121993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Braunstein JB, Anderson GF, Gerstenblith G, Weller W, Niefeld M, Herbert R, Wu AW. Noncardiac comorbidity increases preventable hospitalizations and mortality among Medicare beneficiaries with chronic heart failure. J Am Coll Cardiol. 2003;42(7):1226–33. https://doi.org/10.1016/s0735-1097(03)00947-1.

    Article  PubMed  Google Scholar 

  40. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, Wehrens XH, Deswal A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005. https://doi.org/10.1016/j.jacc.2011.11.040.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Warraich HJ, Kitzman DW, Whellan DJ, Duncan PW, Mentz RJ, Pastva AM, Nelson MB, Upadhya B, Reeves GR. Physical function, frailty, cognition, depression, and quality of life in hospitalized adults >/=60 years with acute decompensated heart failure with preserved versus reduced ejection fraction. Circ Heart Fail. 2018;11(11): e005254. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005254.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pandey A, Kitzman D, Whellan DJ, Duncan PW, Mentz RJ, Pastva AM, Nelson MB, Upadhya B, Chen H, Reeves GR. Frailty among older decompensated heart failure patients: prevalence, association with patient-centered outcomes, and efficient detection methods. JACC Heart Fail. 2019;7(12):1079–88. https://doi.org/10.1016/j.jchf.2019.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. https://doi.org/10.1016/j.jacc.2013.02.092.

    Article  PubMed  Google Scholar 

  44. Molina AJ, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, Haykowsky MJ, Brubaker PH, Kitzman DW. Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail. 2016;4(8):636–45. https://doi.org/10.1016/j.jchf.2016.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moaddel R, Ubaida-Mohien C, Tanaka T, Lyashkov A, Basisty N, Schilling B, Semba RD, Franceschi C, Gorospe M, Ferrucci L. Proteomics in aging research: a roadmap to clinical, translational research. Aging Cell. 2021;20(4): e13325. https://doi.org/10.1111/acel.13325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ubaida-Mohien C, Moaddel R, Moore AZ, Kuo PL, Faghri F, Tharakan R, Tanaka T, Nalls MA, Ferrucci L. Proteomics and epidemiological models of human aging. Front Physiol. 2021;12: 674013. https://doi.org/10.3389/fphys.2021.674013.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vazquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: in search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev. 2020;64: 101164. https://doi.org/10.1016/j.arr.2020.101164.

    Article  CAS  PubMed  Google Scholar 

  48. Kitzman DW, Gardin JM, Gottdiener JS, Arnold A, Boineau R, Aurigemma G, Marino EK, Lyles M, Cushman M, Enright PL, Cardiovascular Health Study Research G. Importance of heart failure with preserved systolic function in patients > or = 65 years of age. CHS Research Group. Cardiovascular Health Study. Am J Cardiol. 2001;87(4):413–9. https://doi.org/10.1016/s0002-9149(00)01393-x.

  49. Stolfo D, Uijl A, Vedin O, Stromberg A, Faxen UL, Rosano GMC, Sinagra G, Dahlstrom U, Savarese G. Sex-based differences in heart failure across the ejection fraction spectrum: phenotyping, and prognostic and therapeutic implications. JACC Heart Fail. 2019;7(6):505–15. https://doi.org/10.1016/j.jchf.2019.03.011.

    Article  PubMed  Google Scholar 

  50. Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol. 2012;24(2):101–6. https://doi.org/10.1002/ajhb.22243.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21. https://doi.org/10.1038/nature11432.

    Article  CAS  PubMed  Google Scholar 

  52. Mercken EM, Crosby SD, Lamming DW, JeBailey L, Krzysik-Walker S, Villareal DT, Capri M, Franceschi C, Zhang Y, Becker K, Sabatini DM, de Cabo R, Fontana L. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12(4):645–51. https://doi.org/10.1111/acel.12088.

    Article  CAS  PubMed  Google Scholar 

  53. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014;5:3557. https://doi.org/10.1038/ncomms4557.

    Article  CAS  PubMed  Google Scholar 

  54. Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, Harrison DG, Liu Y, Hoffmann U, Bauer DC, Newman AB, Kritchevsky SB, Harris TB, Butler J, Health ABCSI. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55(19):2129–37. https://doi.org/10.1016/j.jacc.2009.12.045.

  55. Miyamoto S. Autophagy and cardiac aging. Cell Death Differ. 2019;26(4):653–64. https://doi.org/10.1038/s41418-019-0286-9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumar AA, Kelly DP, Chirinos JA. Mitochondrial dysfunction in heart failure with preserved ejection fraction. circulation. 2019;139(11):1435–50. https://doi.org/10.1161/CIRCULATIONAHA.118.036259.

  57. Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis. 2021;1867(10): 166208. https://doi.org/10.1016/j.bbadis.2021.166208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the men and women who volunteered for this study as well as the research staff who conducted recruitment and assessments. We also give special thanks to Ben Nelson, John Stone, Heather Gregory at WFSM for assistance with data and biospecimen retrieval, and members of the Northwest Lipid Research Laboratory (University of Washington) for performing biochemical assays.

Funding

This work was supported by the National Institutes of Health (NIH) program grant to Wake Forest Claude D. Pepper Older Americans Independence Center (P30 AG21332, Dr. Kritchevsky PI, Dr Justice Pepper Pilot Award PI), Coordinating Center of the Claude D. Pepper Older Americans Independence Centers (U24AG059624, Dr. Kitzman), career development grant: K01 AG059837 (Dr. Justice), and research grants: R01 HL093713 and R01 AG020583 (Dr. Nicklas), and R01 AG18915, R01 AG045551 and (Dr. Kitzman). Also, supported in part by the Kermit Glenn Phillips II Chair in Cardiovascular Medicine at Wake Forest School of Medicine (Dr. Kitzman), additional support was provided through a grant from the Glenn Foundation for Medical Research (Drs. Espeland, Kritchevsky).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie N. Justice.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The SECRET trial was conducted at Wake Forest School of Medicine from February 2009 through November 2014, which was approved by the Institutional Review Board, and registered (NCT00959660).

Consent to participate

All trial participants provided written informed consent.

Consent for publication

All authors consent to publication in GeroScience.

NYHA HF Class: New York Heart Association Heart Failure class. Fat mass as total percent body fat from DEXA. IL-6: interleukin-6 (pg/mL). TNFaR1: tumor necrosis factor-receptor 1 (pg/mL). GDF-15: growth differentiating factor-15 (pg/mL). Cystatin C (mg/L). NT-proBNP: N-terminal-pro-natriuretic peptide (pM).

IL-6, interleukin-6 (pgmL). TNFaR1, tumor necrosis factor-receptor 1 (pgmL). GDF-15, growth differentiating factor-15 (pgmL). Cystatin C (mgL). NT-proBNP, N-terminal-pro-natriuretic peptide (pM).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justice, J.N., Pajewski, N.M., Espeland, M.A. et al. Evaluation of a blood-based geroscience biomarker index in a randomized trial of caloric restriction and exercise in older adults with heart failure with preserved ejection fraction. GeroScience 44, 983–995 (2022). https://doi.org/10.1007/s11357-021-00509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00509-9

Keywords

Navigation