Skip to main content

Advertisement

Log in

Insect dispersal ability is crucial to overcome limitations in patch colonization of Eichhornia crassipes floating meadows

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Dispersal is a pivotal process in ecology since it determines species presence across patches in landscapes. Therefore, understanding dispersal may be critical in light of current environmental changes. Here, we conducted an experiment to evaluate how richness, density, and β-diversity of insects with strong and/or weak aquatic and aerial dispersal abilities are influenced by colonization limitation of aerial and aquatic patches of a floating macrophyte. We used nets to isolate the aquatic (by roots) and aerial (by leaves) routes by which insects may colonize floating macrophytes. We found that strong aquatic and aerial dispersers were not affected by colonization limitation, since the richness and density of these groups did not decrease with limited colonization. Conversely, limited colonization resulted in a strong decrease in the richness and density of weak aquatic and aerial dispersers. Also, the beta diversity of weak dispersers strongly increased with limited colonization, whereas strong dispersers produced more homogeneous communities (low beta diversity). Our findings illustrate that increasing habitat fragmentation and destruction should have stronger impacts on weak dispersers as they are not able to overcome the habitat scarcity. Consequently, only strong dispersers may persist, leading to high community similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measured of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 331:628–628

    Article  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Evol S 32:159–181

    Article  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. Biol Rev 80:204–225

    Article  Google Scholar 

  • Brederveld RJ, Jähnig SC, Lorenz AW, Brunzel S, Soons MB (2011) Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. J Appl Ecol 48:1241–1250

    Article  Google Scholar 

  • Brown BL, Swan CM (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79:571–580

    Article  CAS  PubMed  Google Scholar 

  • Bulla CK, Gomes LC, Miranda LE, Agostinho AA (2011) The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin. Braz Neotrop Ichthyol 9(2):403–409

    Article  Google Scholar 

  • Butakka CMM, Ragonha FH, Train S, Pinha GD, Takeda AM (2016) Chironomidae feeding habits in different habitats from a Neotropical floodplain: exploring patterns in aquatic food webs. Braz J Biol 76:117–125

    Article  CAS  PubMed  Google Scholar 

  • Campos R, Lansac-Tôha FM, Conceição EO, Martens K, Higuti J (2018) Factors affecting the metacommunity structure of periphytic ostracods (Crustacea, Ostracoda): a deconstruction approach based on biological traits. Aquat Sci 80:16

    Article  Google Scholar 

  • Castillo-Escrivá A, Aguilar-Alberola JA, Mesquita-Joanes F (2017) Spatial and environmental effects on a rock-pool metacommunity depend on landscape setting and dispersal mode. Freshw Biol 62:1004–1011

    Article  Google Scholar 

  • De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht L, Van Wichelen J, Vyverman W, Declerck SAJ (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747

    Article  PubMed  Google Scholar 

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Grönroos M, Heino J, Siqueira T, Landeiro VL, Kotanen J, Bini LM (2013) Metacommunity structuring in stream networks: roles of dispersal model, distance type, and regional environmental context. Ecol Evol 13:4473–4487

    Article  Google Scholar 

  • Heino J (2013) Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171:971–980

    Article  PubMed  Google Scholar 

  • Heino J, Grönroos M, Soininen J, Virtanen R, Muotka T (2012) Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121:537–544

    Article  Google Scholar 

  • Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, process and prospects. Freshw Biol 60:845–869

    Article  Google Scholar 

  • Heino J, Alahuhta J, Ala-Hulkko T, Antikainen H, Bini LM, Bonada N, Datry T, Erős T, Hjort J, Kotavaara O, Melo AS, Soininen J (2017) Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ Rev 25:334–349

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 3:346–363

    Article  Google Scholar 

  • Kneitel JM (2018) Occupancy and environmental responses of habitat specialists and generalists depend on dispersal traits. Ecosphere 9:1–11

    Article  Google Scholar 

  • Kouamé MK, Diétoa MY, Da Costa SL, Edia EO, Ouattara A, Gourene G (2010) Aquatic macroinvertebrate assemblages associated with root masses of water hyacinths, Eichhornia crassipes (Mart.) Solms-Laubach, 1883 (Commelinales: Pontederiaceae) in Taabo Lake. Ivory Coast J Nat Hist 44:257–278

    Article  Google Scholar 

  • Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vallend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of β diversity along latitudinal and elevation gradients. Science 333:1755–1758

    Article  CAS  PubMed  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Li F, Tonkin JD, Haase P (2020) Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecol Indic 108:105715

    Article  Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H, MW Group (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  Google Scholar 

  • Melero Y, Stefanescu C, Palmer SCF, Travis JMJ, Pino J (2020) The role of the urban landscape on species with contrasting dispersal ability: Insights from greening plans for Barcelona. Landsc Urban Plan 195:103707

    Article  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Moi DA, Romero GQ, Antiqueira PAP, Mormul RP, Teixeira de Mello F, Bonecker CC (2021) Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct Ecol 35:942–954

    Article  Google Scholar 

  • Morin A, Stephenson J, Strike J (2004) Sieve retention probabilities of stream benthic invertebrates. J N Am Benthol Soc 23:383–391

    Article  Google Scholar 

  • Mormul RP, Thomaz SM, Takeda AM, Behrend RD (2011) Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica 43:738–745

    Article  Google Scholar 

  • Mouquet N, Loreau M (2002) Coexistence in metacommunities: the regional similarity hypothesis. Am Nat 159:420–426

    Article  PubMed  Google Scholar 

  • Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunity. Am Nat 162:544–557

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O´Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Package ‘Vegan’. Community ecology package, version 2. http://CRAN.R-project.org/package=vegan

  • Parain EC, Gray SM, Bersier LF (2019) The effects of temperature and dispersal on species diversity in natural microbial metacommunities. Sci Rep 9:18286

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen I, Masters Z, Hildrew AG, Ormerod SJ (2004) Dispersal of adult aquatic insects in catchments of differing land use. J Appl Ecol 41:934–950

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards a mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755

    Article  Google Scholar 

  • R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing.

  • Recalde FC, Breviglieri CPB, Romero GQ (2020) Allochthonous aquatic subsidies alleviate predation pressure in terrestrial ecosystems. Ecology 101:e03074

    Article  PubMed  Google Scholar 

  • Reinhardt K, Köhler G, Mass S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28:593–602

    Article  Google Scholar 

  • Resetarits W, Silberbush A (2016) Local contagion and regional compression: habitat selection drives spatially explicit, multiscale dynamics of colonization in experimental metacommunities. Ecol Lett 19:191–200

    Article  PubMed  Google Scholar 

  • Rocha-Ramirez A, Ramirez-Rojas A, Chavez-Lopez R, Alcocer J (2007) Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal System, Veracruz. Mexico Aquat Ecol 41:319–333

    Article  CAS  Google Scholar 

  • Romero GQ, Moi DA, Nash LN, Antiqueira PAP, Mormul RP, Kratina P (2021) Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol Lett 17:20210137

    Article  PubMed  Google Scholar 

  • Shurin JB, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159:151–159

    Article  PubMed  Google Scholar 

  • Smith RF, Venugopal PD, Baker ME, Lamp WO (2015) Habitat filtering and adult dispersal determine the taxonomic composition of stream insects in an urbanizing landscape. Freshw Biol 60:1740–1754

    Article  Google Scholar 

  • Stoll S, Kail J, Lorenz AW, Sundermann A, Haase P (2014) The importance of the regional species pool, ecological species traits and local habitat conditions for the colonization of restored river reaches by fish. PLoS ONE 9:e84741

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Nakano S, Tokeshi M (2003) Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshw Biol 48:718–728

    Article  Google Scholar 

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236

    Article  Google Scholar 

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53:358–367

    Google Scholar 

  • Vannette RL, Fukami T (2017) Dispersal enhances beta diversity in nectar microbes. Ecol Lett 20:901–910

    Article  PubMed  Google Scholar 

  • Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJB, Letaw AD, Macdonald AAM, Maclean JE, Myers-Smith IH, Norris AR, Xue X (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430

    Article  Google Scholar 

  • Washko S, Bogan MT (2019) Global patterns of aquatic macroinvertebrate dispersal and functional feeding traits in arid land rock pools. Front Environ Sci 7:106

    Article  Google Scholar 

  • Whatley MH, van Loon EE, Vonk JA, van der Geest HG, Admiraal W (2014) The role of emergent vegetation in structuring aquatic insect communities in peatland drainage ditches. Aquat Ecol 48:267–283

    Article  CAS  Google Scholar 

  • Wilson MJ, McTammany ME (2016) Spatial scale and dispersal influence metacommunity dynamics of benthic invertebrates in a large river. Freshw Sci 35:738–747

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Claudia C. Bonecker for the revision of the manuscript. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 (scholarships to R.G.R. and D.A.M.). R.P.M. and A.S.M. are thankful for the constant funds and productivity grants received from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (projects 307587/2017-7 and 436049/2018-0 to A.S.M. and 302798/2019-6 to R.P.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl García-Ríos.

Additional information

Handling Editor:  Jamie Kneitel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Ríos, R., Moi, D.A., Melo, A.S. et al. Insect dispersal ability is crucial to overcome limitations in patch colonization of Eichhornia crassipes floating meadows. Limnology 23, 287–298 (2022). https://doi.org/10.1007/s10201-021-00688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-021-00688-6

Keywords

Navigation