Skip to main content
Log in

Effect of non-uniform magnetic field on mixing index of a sinusoidal micromixer

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Magnetic fluid micromixers are widely used in medical diagnostic processes, food processing, and biochemical engineering. In the present study, a two-dimensional combined active/passive micromixer was designed and evaluated to perform experimental investigation for 0.1<Re<0.7. The microchannel walls are sinusoidal and a neodymium magnet is placed close to the microchannel. The results demonstrate that the magnetic field improves the mixing quality by 17.5%. It is concluded that the performance of the micromixer with sinusoidal walls is 1.16 times higher than one with a straight channel. The results show that as the volume fraction of magnetic nanoparticles is enhanced, the mixing index is intensified. For instance, the degree of mixing is increased by 24% when the volume fraction enhances from 0.015% to 0.06%. Besides, as the magnet is placed closer to the microchannel, the mixing index is enhanced. The maximum mixing index occurs when the magnet is 13.75 mm from the inlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

horizontal distance of magnets [m]

B:

magnetic flux density distribution [W/m2]

C:

concentration [mol/l]

d:

vertical distance of magnets [m]

dnp :

diameter of nanoparticle [m]

D:

diffusivity coefficient [m2/s]

Dh :

hydraulic diameter [m]

\({\overrightarrow {\rm{F}} _{ext}}\) :

external force [N/m3]

\({\overrightarrow {\rm{F}} _{mag,\,np}}\) :

magnetic force applied to the particle [N/m3]

h:

microchannel height [m]

H:

magnetic field distribution [A/m]

L:

microchannel length [m]

m:

moment on the particle

M:

magnetization

P:

pressure [Pa]

r:

radius [m]

Rnp :

the net rate of production of species

T:

temperature [K]

u:

velocity [m/s]

Uin :

inlet velocity [m/s]

Vp :

volume of the nanoparticle

x:

horizontal coordinate

y:

vertical coordinates

PDMS:

polydimethylsiloxane

η :

mixing efficiency [%]

φ :

volume fraction of nanoparticles

μ :

dynamic viscosity [Pa·s]

χ :

susceptibility

ρ :

density [kg/m3]

μ r :

relative permeability

μ 0 :

vacuum permeability

f:

fluid

g:

gravity

ff:

ferrofluid

nf:

nanofluid

p:

particle

m:

magnetic force

mag:

magnitude

st:

surface tension

References

  1. M. Bayareh, M. N. Ashani and A. Usefian, Chem. Eng. Process., 147, 107771 (2020).

    Article  CAS  Google Scholar 

  2. J. Nam, W. S. Jang and C. S. Lim, Sens. Actuators B Chem., 258, 991 (2018).

    Article  CAS  Google Scholar 

  3. A. Usefian and M. Bayareh, Meccanica, 54, 1149 (2019).

    Article  Google Scholar 

  4. X. Huo and X. Chen, J. Dispers. Sci. Technol., 42, 1469 (2020).

    Google Scholar 

  5. A. Usefian, M. Bayareh and A. Ahmadi Nadooshan, J. Heat Mass Trans. Res., 6(1), 56 (2019).

    Google Scholar 

  6. E.-S. Shanko, Y. van de Burgt, P. D. Anderson and J. M. den Toonder, Micromachines, 10, 731 (2019).

    Article  Google Scholar 

  7. A. Munaz, M. J. Shiddiky and N.-T. Nguyen, Biomicrofluidics, 12, 031501 (2018).

    Article  Google Scholar 

  8. M. Hejazian, D.-T. Phan and N.-T. Nguyen, RSC Adv., 6, 62439 (2016).

    Article  CAS  Google Scholar 

  9. M. Hejazian and N.-T. Nguyen, Micromachines, 8, 37 (2017).

    Article  Google Scholar 

  10. X. Wang, Z. Wang, V. B. Varma, Z. Wang, A. Ray and W. S. Lew, IEEE Magn. Lett, 7, 1 (2016).

    Google Scholar 

  11. C. Y. Wen, C. P. Yeh, C. H. Tsai and L. M. Fu, Electrophoresis, 30, 4179 (2009).

    Article  CAS  Google Scholar 

  12. Y. He, L. Luo and S. Huang, Int. J. Mod. Phys. B, 33, 1950047 (2019).

    Article  CAS  Google Scholar 

  13. A. Munir, J. Wang, Z. Zhu and H. S. Zhou, IEEE Trans. Nanotechnol., 10, 953 (2010).

    Article  Google Scholar 

  14. M. Saadat, M. Ghassemi and M. B. Shafii, Energy Sources A: Recovery Util. Environ. Eff., 42, 1 (2020).

    Article  Google Scholar 

  15. N. Azimi, M. Rahimi and N. Abdollahi, Chem. Eng. Process., 97, 12 (2015).

    Article  CAS  Google Scholar 

  16. D. Nouri, A. Zabihi-Hesari and M. Passandideh-Fard, Sens. Actuators A Phys., 255, 79 (2017).

    Article  CAS  Google Scholar 

  17. G.-P. Zhu and N.-T. Nguyen, Lab Chip, 12, 4772 (2012).

    Article  CAS  Google Scholar 

  18. C.-Y. Lee, W.-T. Wang, C.-C. Liu and L.-M. Fu, Chem. Eng. J., 288, 146 (2016).

    Article  CAS  Google Scholar 

  19. M. Khosravi Parsa, F. Hormozi and D. Jafari, Comput. Fluids, 105, 82 (2014).

    Article  CAS  Google Scholar 

  20. S. Hossain, M. Ansari and K.-Y. Kim, Chem. Eng. J., 150, 492 (2009).

    Article  CAS  Google Scholar 

  21. M. U. Javaid, T. A. Cheema and C. W. Park, Micromachines, 9, 8 (2018).

    Article  Google Scholar 

  22. A. Usefian and M. Bayareh, Meccanica, 55, 1025 (2020).

    Article  Google Scholar 

  23. A. Afzal and K.-Y. Kim, Sens. Actuators B Chem., 211, 198 (2015).

    Article  CAS  Google Scholar 

  24. B. Mondal, S. K. Mehta, P. K. Patowari and S. Pati, Chem. Eng. Process., 136, 44 (2019).

    Article  CAS  Google Scholar 

  25. A. Kausar, F. Sher, A. Hazafa, A. Javed, M. Sillanpää and M. Iqbal, Int. J. Biol. Macromol., 161, 1272 (2020).

    Article  CAS  Google Scholar 

  26. T. Rashid, D. Iqbal, A. Hazafa, S. Hussain, F. Sher and F. Sher, J. Environ. Chem. Eng., 8, 104023 (2020).

    Article  CAS  Google Scholar 

  27. T. Rasheed, S. Shafi, M. Bilal, T. Hussain, F. Sher and K. Rizwan, J. Mol. Liq., 318, 113960 (2020).

    Article  CAS  Google Scholar 

  28. T. Rasheed, A. A. Hassan, F. Kausar, F. Sher, M. Bilal and H. M. N. Iqbal, TrAC Trend. Anal. Chem., 132, 116066 (2020).

    Article  CAS  Google Scholar 

  29. J. Wu, Y. Cui, S. Xuan and X. Gong, Microlluid. Nanolluid., 22, 103 (2018).

    Article  Google Scholar 

  30. D. Bahrami, S. Abbasian-Naghneh, A. Karimipour and A. Karimipour, Math. Methods Appl. Sci., 43, 1 (2020).

    Article  Google Scholar 

  31. H. Brinkman, J. Chem. Phys., 20, 571 (1952).

    Article  CAS  Google Scholar 

  32. C. Y. Wen, K. P. Liang, H. Chen and L. M. Fu, Electrophoresis, 32, 3268 (2011).

    Article  CAS  Google Scholar 

  33. Q. Cao, X. Han and L. Li, Int. J. Appl. Electromagn. Mech., 47, 583 (2015).

    Article  Google Scholar 

  34. M. Nazari, S. Rashidi and J. A. Esfahani, Int. Commun. Heat Mass Transf., 108, 104293 (2019).

    Article  Google Scholar 

  35. D. S. Bhandari, D. Tripathi and V. K. Narla, Eur. Phys. J. Plus, 135(11), 1 (2020).

    Article  Google Scholar 

  36. K. Ramesh, D. Tripathi, M. M. Bhatti and C. M. Khalique, J. Mol. Liq., 314, 113568 (2020).

    Article  CAS  Google Scholar 

  37. N. S. Akbar, A. B. Huda, M. B. Habib and D. Tripathi, Microsyst. Technol., 25, 283 (2019).

    Article  CAS  Google Scholar 

  38. M. Bayareh, Proc. Inst. Mech. Eng., Part C (2020).

  39. A. Shiriny and M. Bayareh, Chem. Eng. Sci., 229, 116102 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Ahmadi Nadooshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, D., Nadooshan, A.A. & Bayareh, M. Effect of non-uniform magnetic field on mixing index of a sinusoidal micromixer. Korean J. Chem. Eng. 39, 316–327 (2022). https://doi.org/10.1007/s11814-021-0932-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0932-z

Keywords

Navigation