Skip to main content
Log in

Molecular weight distribution modeling of LDPE in a continuous stirred-tank reactor using coupled deterministic and stochastic approach

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A hybrid approach that combines the method of moments and Monte Carlo simulation to predict the molecular weight distribution of low-density polyethylene for a continuous stirred tank reactor system is proposed. A ‘Block’, which is repeating reaction group, is introduced for the calculation cost-effective simulation. This model called the ‘block Kinetic Monte Carlo’ is ∼10 to 32 times faster than Neuhaus’s model. The model can be applied to any steady state system and provide a calculation cost reduction effect, where one reaction is much faster than others, for example, the propagation reaction. Furthermore, we performed a case study on the effects of the system temperature and initiator concentration on the MWD and reaction rate ratio. Based on the simulation results of 180 case studies, we determined a quantitative guideline for the appearance of shoulder, which is a function of the rate ratio of reactions to the propagation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ca :

concentration of molecule a [mol/L]

Dn :

dead polymer chain of length n

f:

effectiveness factor for initiator decomposition [dimensionless]

Fsh :

shouldering measurement [dimensionless]

k:

kinetic constant

kb :

kinetic constant of beta scission reaction [s−1]

kcp :

kinetic constant of chain transfer to polymer reaction [L(mol· s)−1]

kcm :

kinetic constant of chain transfer to monomer reaction [L(mol· s)−1]

kd :

kinetic constant of initiator decomposition reaction [s−1]

kp :

kinetic constant of propagation reaction[L(mol·s)−1]

kt :

kinetic constant of termination by combination reaction [L(mol·s)−1]

Ln :

live polymer chain of length n

Ln, sec :

secondary radical polymer chain of length n

Llive :

chain length sampled from the live polymer chain length distribution

Lmat :

the matrix where chain length data is stored

M:

ethylene monomer

N:

number of simulated taget chain

Na :

number of molecules

N AVO :

Avogadro number

N B1 :

number of B1 blocks

NB2 :

number of B2-1 and B2-2 blocks

NB3 :

number of B3-1 and B3-2 blocks

NB4 :

number of B4-1 and B4-2 blocks

nrand :

random number between 0–1

Nsamp :

total number of taget chains to be simulated

Pp1, Pp2 :

Probabilities of propagation reaction

Pt :

Probabilities of termination by combination reaction

Pcp1, Pcp2 :

Probabilities of chain transfer to polymer reaction

Pcm :

Probabilities of chain transfer to monomer reaction

Pb1, Pb2 :

Probabilities of beta scission reaction

r:

stochastic reaction rate

Rj :

initiator decomposition reaction

Rp1, Rp2 :

propagation reaction

Rt :

termination by combination reaction

Rcp1, Rcp2 :

chain transfer to polymer reaction

Rcm :

chain transfer to monomer reaction

Rbeta1, Rbeta2 :

beta scission reaction

rp1, rp2 :

stochastic rate of propagation reaction [mol·s−1]

rt :

stochastic rate of termination by combination reaction [mol·s−1]

rcp1, rcp2 :

stochastic rate of chain transfer to polymer reaction [mol·s−1]

rcm :

stochastic rate of chain transfer to monomer reaction [mol·s−1]

rb1, rb2 :

stochastic rate of beta scission reaction [mol·s−1]

T:

average residence time in CSTR reactor [sec]

t:

current simulation time [sec]

tsamp :

residence time of target chain [sec]

V:

total volume of reactor system [L]

v:

volumetric flow rate of input flow [L/s]

[D]:

concentration of dead polymer [mol/L]

[Dn]:

concentration of the dead polymer of length n [mol/L]

[I]:

concentration of initiator [mol/L]

[L]:

concentration of live polymer [mol/L]

[Ln]:

concentration of the live polymer of length n [mol/L]

[Lsec]:

concentration of secondary radical polymer [mol/L]

[Lsec, n]:

concentration of the secondary radical polymer of length n [mol/L]

[M]:

concentration of monomer [mol/L]

λ k :

kth moment of live polymer chain

λ sec, k :

kth moment of secondary radical polymer chain

μ k :

kth moment of dead polymer chain

CSTR:

continuous stirred-tank reactor

CTA:

chain transfer agent

HDPE:

high density polyethylene

KMC:

kinetic monte carlo

LDPE:

low density polyethylene

MC:

monte carlo

MI:

melt index

MoM:

method of moment

MWD:

molecular weight distribution

PDI:

polydispersity index

SMMA:

single macromolecule approach

SVM:

support vector machine

References

  1. F. A. Bovey, F. C. Schilling, F. L. McCrackin and H. L. Wagner, Macromolecules, 9, 76 (1976).

    Article  CAS  Google Scholar 

  2. J. K. Beasley, J. Am. Chem. Soc., 75, 6123 (1953).

    Article  CAS  Google Scholar 

  3. W. H. Ray, J. Macromol. Sci., Rev. Macromol. Chem., 8, 1 (1972).

    Article  CAS  Google Scholar 

  4. T. J. Crowley and K. Y. Choi, Ind. Eng. Chem. Res., 36, 1419 (1997).

    Article  CAS  Google Scholar 

  5. P. D. Iedema M. Wulkow and H. C. Hoefsloot, Macromolecules, 33, 7173 (2000).

    Article  CAS  Google Scholar 

  6. S. H. Son, J. J. Han and J. M. Lee, Polymer, 126, 74 (2017).

    Article  CAS  Google Scholar 

  7. B. M. Louie, G. M. Carratt and D. S. Soong, J. Appl. Polym. Sci., 30, 3985 (1985).

    Article  CAS  Google Scholar 

  8. A. G. Mikos, C. G. Takoudis and N. A. Peppas, Macromolecules, 19, 2174 (1986).

    Article  CAS  Google Scholar 

  9. S. Zhu and A. E. Hamielec, Macromolecules, 22, 3093 (1989).

    Article  CAS  Google Scholar 

  10. S. Zhu and A. E. Hamielec, J. Polym. Sci. Part B: Polym. Phys., 32, 929 (1994).

    Article  CAS  Google Scholar 

  11. S. Shin, S. Choi, J. Na, I. Jung, M.-K. Kim, M.-J. Park and W.B. Lee, Chem. Eng. J., 131829, https://doi.org/10.1016/j.cej.2021.131829.

  12. G. J. Wells and W. H. Ray, Macromol. Mater. Eng., 290, 319 (2005).

    Article  CAS  Google Scholar 

  13. P. Pladis and C. A. Kiparissides, Chem. Eng. Sci., 53, 3315 (1998).

    Article  CAS  Google Scholar 

  14. R. A. Hutchinson, Macromol. Theory Simul., 10, 144 (2001).

    Article  CAS  Google Scholar 

  15. S. X. Zhang and W. H. Ray, AIChE J., 43, 1265 (1997).

    Article  CAS  Google Scholar 

  16. H. Tobita, J. Polym. Sci., Part B: Polym. Phys., 39, 391 (2001).

    Article  CAS  Google Scholar 

  17. N. Yaghini and P. D. Iedema, Chem. Eng. Sci., 116, 144 (2014).

    Article  CAS  Google Scholar 

  18. D. Meimaroglou, P. Pladis, A. Baltsas and C. Kiparissides, Chem. Eng. Sci., 66, 1685 (2011).

    Article  CAS  Google Scholar 

  19. D. M. Kim, M. Busch, H. C. Hoefsloot and P. D. Iedema, Chem. Eng. Sci., 59, 699 (2004).

    Article  CAS  Google Scholar 

  20. C. Kiparissides, A. Krallis, D. Meimaroglou, P. Pladis and A. Baltsas, Chem. Eng. Technol., 33, 1754 (2010).

    Article  CAS  Google Scholar 

  21. P. D. Iedema and H. C. Hoefsloot, Macromol. Theory Simul., 10, 855 (2001).

    Article  Google Scholar 

  22. D. M. Kim and P. D. Iedema, Chem. Eng. Sci., 59, 2039 (2004).

    Article  CAS  Google Scholar 

  23. D. M. Kim and P. D. Iedema, Chem. Eng. Sci., 63, 2035 (2008).

    Article  CAS  Google Scholar 

  24. N. Yaghini and P. D. Iedema, Chem. Eng. Sci., 130, 310 (2015).

    Article  CAS  Google Scholar 

  25. D. T. Gillespie, J. Phys. Chem., 81, 2340 (1977).

    Article  CAS  Google Scholar 

  26. H. Tobita, Macromol. Theory Simul., 5, 129 (1996).

    Article  CAS  Google Scholar 

  27. H. Tobita, Macromol. React. Eng., 7, 181 (2013).

    Article  CAS  Google Scholar 

  28. H. Tobita, Macromol. Theory Simul., 23, 182 (2014).

    Article  CAS  Google Scholar 

  29. M. Rogošić, H. J. Mencer and Z. Gomzi, Eur. Polym. J., 32, 1337 (1996).

    Article  Google Scholar 

  30. E. Neuhaus, T. Herrmann, I. Vittorias, D. Lilge, G. Mannebach, A. Gonioukh and M. Busch, Macromol. Theory Simul., 23, 415 (2014).

    Article  CAS  Google Scholar 

  31. C. Schütte and M. Wulkow, Macromol. React. Eng., 4, 562 (2010).

    Article  Google Scholar 

  32. D. Eckes and M. Busch, Macromol. Symp., 360, 23 (2016).

    Article  CAS  Google Scholar 

  33. D. Meimaroglou and C. A. Kiparissides, Macromolecules, 43, 5820 (2010).

    Article  CAS  Google Scholar 

  34. P. Feucht, B. Tilger and G. Luft, Chem. Eng. Sci., 40, 1935 (1985).

    Article  CAS  Google Scholar 

  35. H. Tobita, Processes, 3, 731 (2015).

    Article  CAS  Google Scholar 

  36. I. L. Chien, T. W. Kan and B. S. Chen, Comput. Chem. Eng., 31, 233 (2007).

    Article  CAS  Google Scholar 

  37. A. M. Kotliar, J. Polym. Sci., Part A: Gen. Pap., 2, 4303 (1964).

    CAS  Google Scholar 

  38. A. Krallis, P. Pladis and C. Kiparissides, Macromol. Theory Simul., 16, 593 (2007).

    Article  CAS  Google Scholar 

  39. N. H. Kolhapure and R. O. Fox, Chem. Eng. Sci., 54, 3233 (1999).

    Article  CAS  Google Scholar 

  40. L. Marini and C. Georgakis, Chem. Eng. Commun., 30, 361 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1005503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Lee, Y., Park, S. et al. Molecular weight distribution modeling of LDPE in a continuous stirred-tank reactor using coupled deterministic and stochastic approach. Korean J. Chem. Eng. 39, 798–810 (2022). https://doi.org/10.1007/s11814-021-0943-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0943-9

Keywords

Navigation