Skip to main content
Log in

Carbon coated MFe2O4 (M=Fe, Co, Ni) magnetite nanoparticles: A smart adsorbent for direct yellow and moderacid red dyes

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report here a simple approach for synthesis of carbon coated magnetite (C@MFe2O4, M=Co, Ni, Fe) with shell@core nanostructured composites that we used as magnetic-nanosorbents for direct yellow (DYG) and moderacid red (RS) as pollutant textile dyes removal via an adsorption process. The synthesized C@MFe2O4 was characterized by TEM, SEM, EDX, XRD, FT-IR and VSM techniques. TEM results indicated that C@MFe2O4 nanocomposites have 20–30 nm of MFe2O4 nanoparticle core and 2–3 nm in thickness of the amorphous carbon shell. The synthesized C@MFe2O4 nanocomposites have the zero point charge (pHZPC) at 5.5, which suggests that DYG and RS, anionic dyes can be adsorbed onto the C@MFe2O4 nanosorbents in the acidic medium. Adsorption of DYG and RS onto magnetic nanosorbents was optimized and adsorption thermodynamic parameters were evaluated, clearly indicating that the adsorption of RS onto synthesized magnetic-nanosorbents was facile more than that DYG. The adsorption isotherm data showed that the adsorption processes of DYG and RS onto Fe3O4 or C@MFe2O4 nanosorbents are more suitable for the Langmuir model than Freundlich model. The maximum adsorption capacity (qmax) of DYG dye onto Fe3O4, C@Fe3O4 and C@CoFe2O4 adsorbents was 14.641, 36.232 and 7.85 mg g−1, respectively; meanwhile, these values were 41.152, 61.728 and 39.683 mg g−1 for RS dye. These obtained data indicate that the developed Fe3O4, C@Fe3O4 and C@CoFe2O4 nanoparticles can be used as recoverable and recyclable adsorbents for not only organic pigments adsorption but also for heavy metal ion removal or protein extraction as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abedi and F. Nekouei, E-J. Chem., 8, 1588 (2011).

    Article  CAS  Google Scholar 

  2. G. Revathi, S. Ramalingam, P. Subramaniam and A. Ganapathi, E-J. Chem., 8, 1536 (2011).

    Article  CAS  Google Scholar 

  3. A. E.-A. A. Said, A. A. M. Aly, M. M. A. El-Wahab, S. A. E.-F. Soliman, A. A. A. El-Hafez, V. Helmey and M. N. Goda, Energy Environ. Eng., 1, 10 (2013).

    Article  Google Scholar 

  4. N. T.-T. Hoang, A. T.-K. Tran, M.-H. Hoang, T. T. H. Nguyen and X.-T. Bui, Environ. Technol. Innov., 21, 101255 (2020).

    Article  Google Scholar 

  5. V. L. Silva, G. Dilarri, C. R. Mendes, R. B. Lovaglio, A. R. Gonçalves, R. N. Montagnolli and J. Contiero, J. Mol. Liq., 321, 114753 (2021).

    Article  Google Scholar 

  6. H. V. Tran, L. T. Hoang and C. D. Huynh, Chem. Phys., 535, 110793 (2020).

    Article  CAS  Google Scholar 

  7. H. V. Tran, T. L. Tran, T. D. Le, T. D. Le, H. M. T. Nguyen and L. T. Dang, Mater. Res. Express, 6, 025018 (2018).

    Article  Google Scholar 

  8. H. V. Tran, L. T. Bui, T. T. Dinh, D. H. Le, C. D. Huynh and A. X. Trinh, Mater. Res. Express, 4, 035701 (2017).

    Article  Google Scholar 

  9. P. P. Hankare, R. P. Patil, A. V. Jadhav, K. M. Garadkar and R. Sasikala, Appl. Catal. B: Environ., 107, 333 (2011).

    Article  CAS  Google Scholar 

  10. M. C. Ceballos-Chuc, C. M. Ramos-Castillo, J. J. Alvarado-Gil, G. Oskam and G. Rodríguez-Gattorno, J. Phys. Chem. C, 122, 19921 (2018).

    Article  CAS  Google Scholar 

  11. Z. A. Al Othman, M. A. Habila, R. Ali, A. A. Ghafar and M. S. Eldin Hassouna, Arabian J. Chem., 7, 1148 (2014).

    Article  CAS  Google Scholar 

  12. A. Kumar and H. M. Jena, J. Clean. Prod., 137, 1246 (2016).

    Article  CAS  Google Scholar 

  13. E. I. El-Shafey, S. N. F. Ali, S. Al-Busafi and H. A. J. Al-Lawati, J. Environ. Chem. Eng., 4, 2713 (2016).

    Article  CAS  Google Scholar 

  14. C. A. P. Almeida, N. A. Debacher, A. J. Downs, L. Cottet and C. A. D. Mello, J. Colloid Interface Sci., 332, 46 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. L. Wang, J. Zhang and A. Wang, Colloids Surf. A: Physicochem. Eng. Asp., 322, 47 (2008).

    Article  CAS  Google Scholar 

  16. D. Dutta, D. Thakur and D. Bahadur, Chem. Eng. J., 281, 482 (2015).

    Article  CAS  Google Scholar 

  17. H. Mittal, A. Maity and S. S. Ray, Chem. Eng. J., 279, 166 (2015).

    Article  CAS  Google Scholar 

  18. G. M. K. Tolba, A. M. Bastaweesy, E. A. Ashour, W. Abdelmoez, K. A. Khalil and N. A. M. Barakat, Arabian J. Chem., 9, 287 (2016).

    Article  CAS  Google Scholar 

  19. D. M. EL-Mekkawi, F. A. Ibrahim and M. M. Selim, J. Environ. Chem. Eng., 4, 1417 (2016).

    Article  CAS  Google Scholar 

  20. T. S. Jamil, H. H. A. Ghafar, H. S. Ibrahim and I. H. A. El-Maksoud, Solid State Sci., 13, 1844 (2011).

    Article  CAS  Google Scholar 

  21. A. K. Hammed, N. Dewayanto, D. Du, M. H. A. Rahim and M. R. Nordin, J. Environ. Chem. Eng., 4, 2607 (2016).

    Article  CAS  Google Scholar 

  22. Z. Shen, X. Fan, D. Hou, F. Jin, D. O’Connor, D. C. W. Tsang, Y. S. Ok and D. S. Alessi, Chemosphere, 233, 149 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. S. S. Yang, Y. Chen, Y. Zhang, H. M. Zhou, X. Y. Ji, L. He, D. F. Xing, N. Q. Ren, S. H. Ho and W. M. Wu, Environ. Pollut., 252, 1142 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. N. Amin, A. Hussain, S. Alamzeb and S. Begum, Food Chem., 136, 1515 (2013).

    Article  PubMed  Google Scholar 

  25. H. Treviño-Cordero, L. G. Juárez-Aguilar, D. I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet and M. A. Montes-Morán, Ind. Crops Products, 42, 315 (2013).

    Article  Google Scholar 

  26. H. Kominko, K. Gorazda and Z. Wzorek, J. Environ. Manage., 248, 109283 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Z. M. Xu, Z. Wang, Q. Gao, L.-L. Wang, L.-L. Chen, Q.-G. Li, J.-J. Jiang, H.-J. Ye, D.-S. Wang and P. Yang, J. Environ. Manage., 244, 453 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. A. Saeed, M. Iqbal and M. W. Akhtar, J. Hazard. Mater., 117, 65 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. K. Page, M. J. Harbottle, P. J. Cleall and T. R. Hutchings, Sci. Total Environ., 487, 260 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. N. Gupta, A. K. Kushwaha and M. C. Chattopadhyaya, Arabian J. Chem., 9, S707 (2016).

    Article  CAS  Google Scholar 

  31. W. Hassan, U. Farooq, M. Ahmad, M. Athar and M. A. Khan, Arabian J. Chem., 10, S1512 (2017).

    Article  CAS  Google Scholar 

  32. A. J. B. Leite, E. C. Lima, G. S. dos Reis, P. S. Thue, C. Saucier, F. S. Rodembusch, S. L. P. Dias, C. S. Umpierres and G. L. Dotto, J. Environ. Chem. Eng., 5, 4307 (2017).

    Article  CAS  Google Scholar 

  33. R. R. Schio, B. C. da Rosa, J. O. Gonçalves, L. A. A. Pinto, E. S. Mallmann and G. L. Dotto, Int. J. Biol. Macromol., 121, 373 (2019).

    Article  Google Scholar 

  34. M. Atrous, L. Sellaoui, M. Bouzid, E. C. Lima, P. S. Thue, A. Bonilla-Petriciolet and A. B. Lamine, J. Mol. Liq., 294, 111610 (2019).

    Article  CAS  Google Scholar 

  35. M. Kosmulski, J. Colloid Interface Sci., 275, 214 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. M. Kosmulski, J. Colloid Interface Sci., 298, 730 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. A. Ebrahimian Pirbazari, E. Saberikhah and S. S. H. Kozani, Water Resour. Ind., 7–8, 23 (2014).

    Article  Google Scholar 

  38. L. Wang, J. Li, Y. Wang, L. Zhao and Q. Jiang, Chem. Eng. J., 181–182, 72 (2012).

    Article  Google Scholar 

  39. A. Millan, A. Urtizberea, N. J. O. Silva, F. Palacio, V. S. Amaral, E. Snoeck and V. Serin, J. Magn. Magn. Mater., 312, L5 (2007).

    Article  CAS  Google Scholar 

  40. M. Stoia, C. Păcurariu, R. Istratie and D. Nižńanský, J. Therm. Anal. Calorim., 121, 989 (2015).

    Article  CAS  Google Scholar 

  41. X. Bao, Z. Qiang, J.-H. Chang, W. Ben and J. Qu, J. Environ. Sci., 26, 962 (2014).

    Article  CAS  Google Scholar 

  42. W. Zhang, L. Y. Zhang, X. J. Zhao and Z. Zhou, J. Mol. Liq., 222, 995 (2016).

    Article  CAS  Google Scholar 

  43. G. Z. Kyzas, E. A. Deliyanni and K. A. Matis, J. Chem. Technol. Biotechnol., 89, 196 (2014).

    Article  CAS  Google Scholar 

  44. L. Slavov, M. V. Abrashev, T. Merodiiska, C. Gelev, R. E. Vandenberghe, I. Markova-Deneva and I. Nedkov, J. Magn. Magn. Mater., 322, 1904 (2010).

    Article  CAS  Google Scholar 

  45. P. C. Panta and C. P. Bergmann, J. Material. Sci. Eng., 5, 1 (2015).

    Google Scholar 

  46. F. Sotomayor, K. A. Cychosz and M. Thommes, Accounts Mater. Surf. Res., 3, 34 (2018).

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Ministry of Education and Training of Vietnam under project code B2020-SPH-02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hoang Vinh Tran or Dang Hai Le.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H.V., Nguyen, H.V., Vu, D.V. et al. Carbon coated MFe2O4 (M=Fe, Co, Ni) magnetite nanoparticles: A smart adsorbent for direct yellow and moderacid red dyes. Korean J. Chem. Eng. 39, 431–439 (2022). https://doi.org/10.1007/s11814-021-0905-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0905-2

Keywords

Navigation