Skip to main content

Advertisement

Log in

Temperature driven internal heat integration in an energy-efficient partial double annular column

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flow-rate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEAC:

dodecanoic acid [-]

DWC:

dividing wall column [-]

HIDiC:

internally heat-integrated distillation column [-]

HP:

high-pressure [-]

HT:

high-temperature [-]

LT:

low-temperature [-]

MEDEC:

methyl dodecanoate [-]

MEOH:

methanol [-]

RD:

reactive distillation [-]

RDWC:

reactive dividing wall column [-]

SZ:

sulphated zirconia [-]

TAC:

total annual cost [103$/yr]

TUC:

total utility consumption [kW]

VRHP:

vapor recompression heat pump [-]

2-EHDEC:

2-ethylhexyl dodecanoate [-]

2-EHOH:

2-ethylhexanol [-]

A:

heat transfer area [m2]

C cat :

molar concentration of catalyst [m−3]

D:

diameter of a column [m]

ΔH:

heat of reaction [kJ/mol]

ΔliqHo :

standard liquefaction enthalpy [kJ/mol]

Ka :

activity-based equilibrium constant [-]

kC :

rate constant of catalytic term [kmol m−6 s−1]

k*U :

rate constant of uncatalytic term [kmol m−6 s−1]

k1 :

rate constant of forward reaction [kmol kg−1 s−1]

k−1 :

rate constant of reverse reaction [kmol kg−1 s−1]

L:

try spacing of one stage [m]

NRX :

reaction stages [-]

NTotal :

number of total stages [-]

NFACID :

feed stage of acid [-]

NFOH :

feed stage of alcohol [-]

Q:

heat transfer rate [W]

ΔT:

temperature differences of overlapping stages [°C]

ΔTeff :

effective temperature difference [°C]

ΔTmin :

minimum temperature approach [°C]

U:

heat transfer coefficient [W/m2·K]

VM :

molar liquid volume [m3]

ai :

liquid activity [-]

References

  1. F. I. Gomez-Castro, V. Rico-Ramirez, J. G. Segovia-Hernandez and S. Hernandez, Chem. Eng. Process. Process Intensif., 49, 262 (2010).

    Article  CAS  Google Scholar 

  2. G. M. Kim, W. Y. Choi, J. H. Park, S. J. Jeong, J.-E. Hong, W. Jung and J. W. Lee, ACS Appl. Nano Mater., 3, 8592 (2020).

    Article  CAS  Google Scholar 

  3. N. V. D. Long, D. Y. Lee, T. H. Han, P. Sunyong, H. B. Bong and M. Lee, Korean J. Chem. Eng., 37, 1823 (2020).

    Article  CAS  Google Scholar 

  4. R. J. Galanido, D. S. Kim and J. Cho, Korean J. Chem. Eng., 37, 850 (2020).

    Article  Google Scholar 

  5. Z. Jiang and R. Agrawal, Chem. Eng. Res. Des., 147, 122 (2019).

    Article  CAS  Google Scholar 

  6. M. F. Malone and M. F. Doherty, Ind. Eng. Chem. Res., 39, 3953 (2000).

    Article  CAS  Google Scholar 

  7. A. A. Kiss, M. Jobson and X. Gao, Ind. Eng. Chem. Res., 58, 5909 (2019).

    Article  CAS  Google Scholar 

  8. J. W. Lee, S. Hauan and A. W. Westerberg, Ind. Eng. Chem. Res., 39, 1061 (2000).

    Article  CAS  Google Scholar 

  9. J. W. Lee and A. W. Westerberg, AIChE J., 47, 1333 (2001).

    Article  CAS  Google Scholar 

  10. R. S. Huss, F. Chen, M. F. Malone and M. F. Doherty, Comput. Chem. Eng., 27, 1855 (2003).

    Article  CAS  Google Scholar 

  11. S. B. Gadewar, M. F. Malone and M. F. Doherty, Ind. Eng. Chem. Res., 46, 3255 (2007).

    Article  CAS  Google Scholar 

  12. J. W. Lee, S. Hauan and A. W. Westerberg, AIChE J., 46, 1218 (2000).

    Article  CAS  Google Scholar 

  13. J. W. Lee, S. Hauan, K. M. Lien and A. W. Westerberg, Proc. R. Soc. A, 456, 1953 (2000).

    Article  CAS  Google Scholar 

  14. J. W. Lee, S. Hauan, K. M. Lien and A. W. Westerberg, Proc. R. Soc. A, 456, 1965 (2000).

    Article  CAS  Google Scholar 

  15. I. Dejanović, L. Matijašević and Ÿ. Olujić, Chem. Eng. Process., 49, 559 (2010).

    Article  Google Scholar 

  16. Ö. Yildirim, A. A. Kiss and E. Y. Kenig, Sep. Purit. Technol., 80, 403 (2011).

    Article  CAS  Google Scholar 

  17. W. Jang, H. Lee, J.-i. Han and J. W. Lee, Ind. Eng. Chem. Res., 58, 8206 (2019).

    Article  CAS  Google Scholar 

  18. W. Jang, K. Namgung, H. Lee, H. Mo and J. W. Lee, Ind. Eng. Chem. Res., 59, 1966 (2020).

    Article  CAS  Google Scholar 

  19. I. Mueller and E. Y. Kenig, Ind. Eng. Chem. Res., 46, 3709 (2007).

    Article  CAS  Google Scholar 

  20. F. J. Novita, H.-Y. Lee and M. Lee, Korean J. Chem. Eng., 35, 926 (2018).

    Article  CAS  Google Scholar 

  21. S. Feng, Q. Ye, H. Xia, R. Li and X. Suo, Chem. Eng. Res. Des., 125, 204 (2017).

    Article  CAS  Google Scholar 

  22. A. Yang, S. Sun, A. Eslamimanesh, S. a. Wei and W. Shen, Energy, 172, 320 (2019).

    Article  CAS  Google Scholar 

  23. K. Namgung, H. Lee W. Jang, H. Mo and J. W. Lee, Chem. Eng. Process. Process Intensif., 154, 108048 (2020).

    Article  CAS  Google Scholar 

  24. H. Mo, H. Lee, W. Jang, K. Namgung and J. W. Lee, Korean J. Chem. Eng., 38, 195 (2021).

    Article  CAS  Google Scholar 

  25. A. Harwardt and W. Marquardt, AIChE J., 58, 3740 (2012).

    Article  CAS  Google Scholar 

  26. H. Lee, W. Jang and J. W. Lee, Korean J. Chem. Eng., 36, 954 (2019).

    Article  CAS  Google Scholar 

  27. J. Fang, X. Cheng, Z. Li, H. Li and C. Li, Chin. J. Chem. Eng., 27, 1272 (2019).

    Article  CAS  Google Scholar 

  28. M. Gadalla, L. Jiménez, Z. Olujic and P. J. Jansens, Comput. Chem. Eng., 31, 1346 (2007).

    Article  CAS  Google Scholar 

  29. T. Glenchur and R. Govind, Sep. Sci. Technol., 22, 2323 (1987).

    Article  CAS  Google Scholar 

  30. K. Naito, M. Nakaiwa, K. Huang, A. Endo, K. Aso, T. Nakanishi, T. Nakamura, H. Noda and T. Takamatsu, Comput. Chem. Eng., 24, 495 (2000).

    Article  CAS  Google Scholar 

  31. M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya and T. Takamatsu, Chem. Eng. Res. Des., 81, 162 (2003).

    Article  CAS  Google Scholar 

  32. H. Lee, H. Mo, K. Namgung, W. Jang and J. W. Lee, Ind. Eng. Chem. Res., 59, 14398 (2020).

    Article  CAS  Google Scholar 

  33. F. Omota, A. C. Dimian and A. Bliek, Chem. Eng. Sci., 58, 3159 (2003).

    Article  CAS  Google Scholar 

  34. F. Omota, A. C. Dimian and A. Bliek, Chem. Eng. Sci., 58, 3175 (2003).

    Article  CAS  Google Scholar 

  35. S. Steinigeweg and J. Gmehling, Ind. Eng. Chem. Res., 42, 3612 (2003).

    Article  CAS  Google Scholar 

  36. M. Hino, M. Kurashige, H. Matsuhashi and K. Arata, Thermochim. Acta, 441, 35 (2006).

    Article  CAS  Google Scholar 

  37. M. A. Alves-Rosa, L. Martins, P. Hammer, S. H. Pulcinelli and C. V. Santilli, RSC Adv., 6, 6686 (2016).

    Article  CAS  Google Scholar 

  38. R. Lamba, S. Kumar and S. Sarkar, Chem. Eng. Commun., 205, 281 (2018).

    Article  CAS  Google Scholar 

  39. M. F. Doherty, Chem. Eng. Sci., 40, 1885 (1985).

    Article  CAS  Google Scholar 

  40. Y.-C. Wu, H.-Y. Lee, C.-Y. Tsai, H.-P. Huang and I. L. Chien, Comput. Chem. Eng., 57, 63 (2013).

    Article  CAS  Google Scholar 

  41. A. C. G. van Genderen, J. C. van Miltenburg, J. G. Blok, M. J. van Bommel, P. J. van Ekeren, G. J. K. van den Berg and H. A. J. Oonk, Fluid Phase Equilib., 202, 109 (2002).

    Article  CAS  Google Scholar 

  42. A. A. Kiss and Ž. Olujić, Chem. Eng. Process., 86, 125 (2014).

    Article  CAS  Google Scholar 

  43. B. Linnhoff and E. Hindmarsh, Chem. Eng. Sci., 38, 745 (1983).

    Article  CAS  Google Scholar 

  44. M. Gadalla, Z. Olujic, L. Sun, A. De Rijke and P. J. Jansens, Chem. Eng. Res. Des., 83, 987 (2005).

    Article  CAS  Google Scholar 

  45. B.-H. Li, Y. E. Chota Castillo and C.-T. Chang, Chem. Eng. Res. Des., 148, 260 (2019).

    Article  CAS  Google Scholar 

  46. B.-H. Li and C.-T. Chang, Ind. Eng. Chem. Res., 49, 3967 (2010).

    Article  CAS  Google Scholar 

  47. W. L. Luyben, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).

    Book  Google Scholar 

Download references

Acknowledgements

This work was performed under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (C0-2427-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, C., Lee, H., Lee, M. et al. Temperature driven internal heat integration in an energy-efficient partial double annular column. Korean J. Chem. Eng. 39, 263–274 (2022). https://doi.org/10.1007/s11814-021-0937-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0937-7

Keywords

Navigation