Skip to main content
Log in

An effective method for cysteine determination based on fluorescence resonance energy system between co-doped graphene quantum dots and silver nanoparticles

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cysteine (Cys) is a crucial amino acid. Developing a method for Cys evaluation and detection is necessary for the diagnosis of various diseases. A variety of sensors use graphene quantum dots (GQDs) for biological compound determination; however, GQDs demonstrate very poor fluorescence quantum yield. Therefore, we doped nitrogen and phosphorus into GQDs to form composite material NP-GQDs with enhanced fluorescence properties. NP-GQDs were characterized by ultraviolet-visible, fluorescence spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Then, we used NP-GQDs as donors and silver nanoparticles (AgNPs) as acceptors to design a fluorescence resonance energy transfer (FRET) system for Cys detection. Optimal conditions for sensing were investigated, and under these conditions our FRET system showed good results in Cys determination. The fluorescence intensity of NP-GQDs was quenched proportionally along with increasing Cys concentration from 0.5 to 4.5 µM and the limit of detection (LOD) was 0.1 µM. In the presence of different amino acids, the FRET system also showed excellent selectivity for the Cys detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cao, X. Jiang and N. Fu, Dyes Pigm., 174, 107978 (2020).

    Article  CAS  Google Scholar 

  2. Y. Wang, Q. T. Meng, Q. Han, G. J. He, Y. Y. Hu, H. Feng, H. M. Jia, R. Zhang and Z. Q. Zhang, New J. Chem., 42, 15839 (2018).

    Article  CAS  Google Scholar 

  3. M. Qian, J. Xia, L. W. Zhang, Q. X. Chen, J. L. Guo, H. Y. Cui, Y. S. Kafuti, J. Y. Wang and X. J. Peng, Sens. Actuator B-Chem., 321, 128441 (2020).

    Article  CAS  Google Scholar 

  4. E. Weerapana, C. Wang, G. M. Simon, F. Richter, S. Khare, M. B. D. Dillon, D. A. Bachovchin, K. Mowen, D. Baker and B. F. Cravatt, Nature, 468, 790 (2010).

    Article  CAS  Google Scholar 

  5. T. K. Chung, M. A. Funk and D. H. Baker, J. Nutr., 120, 158 (1990).

    Article  CAS  Google Scholar 

  6. X. X. Xie, C. X. Yin, Y. K. Yue and F. J. Huo, Sens. Actuator B-Chem., 267, 76 (2018).

    Article  CAS  Google Scholar 

  7. S. Shahrokhian, Anal. Chem., 73, 5972 (2001).

    Article  CAS  Google Scholar 

  8. S. L. Yang, G. Li, N. Xia, Y. X. Wang, P. P. Liu and L. B. Qu, J. Alloys Compd., 853, 157077 (2021).

    Article  CAS  Google Scholar 

  9. S. Sahu, S. Sharma, T. Kant, K. Shrivas and K. K. Ghosh, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 246, 118961 (2021).

    Article  CAS  Google Scholar 

  10. X. F. Hou, Z. S. Li, Y. Q. Li, Q. H. Zhou, C. H. Liu, D. Fan, J. J. Wang, R. J. Xu and Z. H. Xu, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 246, 119030 (2021).

    Article  CAS  Google Scholar 

  11. J. X. Hong and G. Q. Feng, Sens. Actuator B-Chem., 326, 129016 (2021).

    Article  CAS  Google Scholar 

  12. B. Feng, Y. Liu, S. Huang, X. Y. Huang, L. Huang, M. Liu, J. X. Wu, T. Du, S. L. Wang, X. P. Feng and W. B. Zeng, Sens. Actuator B-Chem., 325, 128786 (2020).

    Article  CAS  Google Scholar 

  13. J. Shi, Y. Wang, X. Tang, W. Liu, H. Jiang, W. Dou and W. Liu, Dyes Pigm., 100, 255 (2014).

    Article  CAS  Google Scholar 

  14. F. L. Ming, J. Z. Hou, C. J. Hou, M. Yang, X. F. Wang, J. W. Li, D. Q. Huo and Q. He, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 222, 8 (2019).

    Article  Google Scholar 

  15. X. R. Wu, L. N. Wu, X. Z. Cao, Y. Li, A. R. Liu and S. Q. Liu, RSC Adv., 8, 20000 (2018).

    Article  CAS  Google Scholar 

  16. L. P. Lin, Y. H. Wang, Y. L. Xiao and W. Liu, Microchim. Acta, 186, 7 (2019).

    Article  Google Scholar 

  17. Y. T. Xie, J. X. Zheng, Y. L. Wang, J. L. Wan, Y. Z. Yang, X. G. Liu and Y. K. Chen, Nanotechnology, 30, 10 (2019).

    Google Scholar 

  18. T. H. Le, H. J. Lee, J. H. Kim and S. J. Park, Sensors, 20, 3470 (2020).

    Article  CAS  Google Scholar 

  19. J. K. Daniels and G. Chumanov, J. Electroanal. Chem., 575, 203 (2005).

    Article  CAS  Google Scholar 

  20. H. S. Jiang, Y. Zhang, Z. W. Lu, R. Lebrun, B. Gontero and W. Li, Small, 15, e1900860 (2019).

    Article  Google Scholar 

  21. Á. I. López-Lorente, M. L. Soriano and M. Valcárcel, Microchim. Acta, 181, 1789 (2014).

    Article  Google Scholar 

  22. M. Gakiya-Teruya, L. Palomino-Marcelo and J. C. F. Rodriguez-Reyes, Methods Protoc., 2, 3 (2019).

    Article  CAS  Google Scholar 

  23. Q. Xu, B. F. Li, Y. C. Ye, W. Cai, W. J. Li, C. Y. Yang, Y. S. Chen, M. Xu, N. Li, X. S. Zheng, J. Street, Y. Luo and L. L. Cai, Nano Res., 11, 3691 (2018).

    Article  CAS  Google Scholar 

  24. Y. Xu, M. Wu, Y. Liu, X. Z. Feng, X. B. Yin, X. W. He and Y. K. Zhang, Chem. Eur. J., 19, 2276 (2013).

    Article  CAS  Google Scholar 

  25. S. Liu, J. Q. Tian, L. Wang, Y. W. Zhang, X. Y. Qin, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi and X. P. Sun, Adv. Mater., 24, 2037 (2012).

    Article  CAS  Google Scholar 

  26. M. Amjadi, T. Hallaj, J. L. Manzoori and T. Shahbazsaghir, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 201, 223 (2018).

    Article  CAS  Google Scholar 

  27. W. J. Wang, J. W. Peng, F. M. Li, B. Y. Su, X. Chen and X. M. Chen, Microchim. Acta, 186, 32 (2019).

    Article  Google Scholar 

  28. D. Qu, Z. C. Sun, M. Zheng, J. Li, Y. Q. Zhang, G. Q. Zhang, H. F. Zhao, X. Y. Liu and Z. G. Xie, Adv. Opt. Mater., 3, 360 (2015).

    Article  CAS  Google Scholar 

  29. S. Aryal, K. C. R. Bahadur, N. Bhattarai, C. K. Kim and H. Y. Kim, J. Colloid Interface Sci., 299, 189 (2006).

    Article  Google Scholar 

  30. Z. G. Shen, G. C. Han, C. F. Liu, X. Y. Wang and R. C. Sun, J. Alloys Compd., 686, 82 (2016).

    Article  CAS  Google Scholar 

  31. M. L. Yola, V. K. Gupta, T. Eren, A. E. Sen and N. Atar, Electrochim. Acta, 120, 204 (2014).

    Article  CAS  Google Scholar 

  32. M. Hussain, N. Khaliq, A. Nisar, M. Khan, S. Karim, A. A. Khan, X. Yi, M. Maqbool and G. Ali, Nanotechnology, 31, 13 (2020).

    Google Scholar 

  33. Y. T. Yu, J. B. Wang, H. Xiang, L. K. Ying, C. Y. Wu, H. W. Zhou and H. Y. Liu, Dyes Pigm., 183, 7 (2020).

    Google Scholar 

  34. L. Yang, G. Li, N. Xia, Y. X. Wang, P. P. Liu and L. B. Qu, J. Alloys Compd., 853, 9 (2021).

    Google Scholar 

  35. Y. M. Zhang, J. Song, W. H. Shao and J. Li, Micropor. Mesopor. Mater., 310, 9 (2021).

    Google Scholar 

  36. S. L. Yang, G. Li, N. Xia, P. P. Liu, Y. X. Wang and L. B. Qu, J. Electroanal. Chem., 877, 9 (2020).

    Article  Google Scholar 

  37. N. Vladislavic, I. S. Roncevic, M. Buzuk, M. Buljac and I. Drventic, J. Solid State Electrochem., 25, 841 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Capacity Enhancement Project through Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (Grant No. 2019R1A6C1010016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.H., Ahn, Y.N. & Park, S.J. An effective method for cysteine determination based on fluorescence resonance energy system between co-doped graphene quantum dots and silver nanoparticles. Korean J. Chem. Eng. 39, 1065–1071 (2022). https://doi.org/10.1007/s11814-021-0956-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0956-4

Keywords

Navigation