Skip to main content
Log in

Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Ethylene is an important feedstock for various industrial processes, particularly in the polymer industry. Unfortunately, during naphtha cracking to produce ethylene, there are instances of acetylene presence in the product stream, which poisons the Ziegler—Natta polymerization catalysts. Thus, appropriate process modification, optimization, and in particular, catalyst design are essential to ensure the production of highly pure ethylene that is suitable as a feedstock in polymerization reactions. Accordingly, carefully selected process parameters and the application of various catalyst systems have been optimized for this purpose. This review provides a holistic view of the recent reports on the selective hydrogenation of acetylene. Previously published reviews were limited to Pd catalysts. However, effective new metal and non-metal catalysts have been explored for selective acetylene hydrogenation. Updates on this recent progress and more comprehensive computational studies that are now available for the reaction are described herein. In addition to the favored Pd catalysts, other catalyst systems including mono, bimetallic, trimetallic, and ionic catalysts are presented. The specific role(s) that each process parameter plays to achieve high acetylene conversion and ethylene selectivity is discussed. Attempts have been made to elucidate the possible catalyst deactivation mechanisms involved in the reaction. Extensive reports suggest that acetylene adsorption occurs through an active single-site mechanism rather than via dual active sites. An increase in the reaction temperature affords high acetylene conversion and ethylene selectivity to obtain reactant streams free of ethylene. Conflicting findings to this trend have reported the presence of ethylene in the feed stream. This review will serve as a useful resource of condensed information for researchers in the field of acetylene-selective hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barazandeh K, Dehghani O, Hamidi M, Aryafard E, Rahimpour M R. Investigation of coil outlet temperature effect on the performance of naphtha cracking furnace. Chemical Engineering Research & Design, 2015, 94(14): 307–316

    Article  CAS  Google Scholar 

  2. Dehghani O, Rahimpour M R, Shariati A. An experimental approach on industrial Pd-Ag supported α-Al2O3 catalyst used in acetylene hydrogenation process: mechanism, kinetic and catalyst decay. Processes (Basel, Switzerland), 2019, 7(3): 136–157

    CAS  Google Scholar 

  3. Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115

    Article  CAS  Google Scholar 

  4. He Y, Liang L, Liu Y, Feng J, Ma C, Li D. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-Al2O3 catalyst. Journal of Catalysis, 2014, 309: 166–173

    Article  CAS  Google Scholar 

  5. Molnár Á, Sárkány A, Varga M. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 185–221

    Article  Google Scholar 

  6. Urmès C, Schweitzer J M, Cabiac A, Schuurman Y. Kinetic study of the selective hydrogenation of acetylene over supported palladium under tail-end conditions. Catalysts, 2019, 9(2): 180–192

    Article  CAS  Google Scholar 

  7. McCue A J, Anderson J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142–153

    Article  CAS  Google Scholar 

  8. Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catalysis, 2016, 6(2): 1054–1061

    Article  CAS  Google Scholar 

  9. Liu Y, McCue A J, Miao C, Feng J, Li D, Anderson J A. Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2018, 364: 406–414

    Article  CAS  Google Scholar 

  10. Gärtner C A, van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem, 2013, 5(11): 3196–3217

    Article  CAS  Google Scholar 

  11. Esmaeili E, Mortazavi Y, Khodadadi A A, Rashidi A M, Rashidzadeh M. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene. Applied Surface Science, 2012, 263: 513–522

    Article  CAS  Google Scholar 

  12. Ravanchi M T, Sahebdelfar S, Komeili S. Acetylene selective hydrogenation: a technical review on catalytic aspects. Reviews in Chemical Engineering, 2018, 34(2): 215–237

    Article  CAS  Google Scholar 

  13. Ayodele O B, Cai R, Wang J, Ziouani Y, Liang Z, Chiara Spadaro M, Kovnir K, Arbiol J, Akola J, Palmer R, et al. Synergistic computational-experimental discovery of highly selective PtCu nanocluster catalysts for acetylene semihydrogenation. ACS Catalysis, 2019, 10(1): 451–457

    Article  CAS  Google Scholar 

  14. Zhang S, Chen C Y, Jang B W L, Zhu A M. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256: 161–169

    Article  CAS  Google Scholar 

  15. Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146

    Article  CAS  Google Scholar 

  16. Komeili S, Takht Ravanchi M, Rahimi Fard M, Taeb A. Effect of Ni-modified alpha alumina on the textural properties as a catalyst support. In 8th International Chemical Engineering Congress (IChEC 2014), Kish Island, Iran. 2014

  17. McKenna F, Mantarosie L, Wells R, Hardacre C, Anderson J. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638

    Article  CAS  Google Scholar 

  18. Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity ofacetylene hydrogenation on Pd surfaces: a density functional theory study. Journal of Catalysis, 2013, 305: 264–276

    Article  CAS  Google Scholar 

  19. Hu M, Wang X. Effect of N3 species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104

    Article  CAS  Google Scholar 

  20. Crespo-Quesada M, Yoon S, Jin M, Prestianni A, Cortese R, Cárdenas-Lizana F, Duca D, Weidenkaff A, Kiwi-Minsker L. Shape-dependence of Pd nanocrystal carburization during acetylene hydrogenation. Journal of Physical Chemistry C, 2015, 119(2): 1101–1107

    Article  CAS  Google Scholar 

  21. Jin Q, He Y, Miao M, Guan C, Du Y, Feng J, Li D. Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene. Applied Catalysis A, General, 2015, 500: 3–11

    Article  CAS  Google Scholar 

  22. Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16

    Article  CAS  Google Scholar 

  23. Jin Y, Datye A K, Rightor E, Gulotty R, Waterman W, Smith M, Holbrook M, Maj J, Blackson J. The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 2001, 203(2): 292–306

    Article  CAS  Google Scholar 

  24. Mei D, Sheth P A, Neurock M, Smith C M. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd (111). Journal of Catalysis, 2006, 242(1): 1–15

    Article  CAS  Google Scholar 

  25. Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(02): 91–144

    Article  CAS  Google Scholar 

  26. Tejeda-Serrano M, Mon M, Ross B, Gonell F, Ferrando-Soria J, Corma A, Leyva-Pérez A, Armentano D, Pardo E. Isolated Fe(III)-O sites catalyze the hydrogenation of acetylene in ethylene flows under front-end industrial conditions. Journal of the American Chemical Society, 2018, 140(28): 8827–8832

    Article  CAS  PubMed  Google Scholar 

  27. Albani D, Shahrokhi M, Chen Z, Mitchell S, Hauert R, López N, Pérez-Ramírez J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9(1): 2634–2644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. He Y, Liu Y, Yang P, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene. Journal of Catalysis, 2015, 330: 61–70

    Article  CAS  Google Scholar 

  29. Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469

    Article  CAS  Google Scholar 

  30. Moses J M, Weiss A H, Matusek K, Guczi L. The effect of catalyst treatment on the selective hydrogenation of acetylene over palladium/alumina. Journal of Catalysis, 1984, 86(2): 417–426

    Article  CAS  Google Scholar 

  31. Backman A, Masel R. An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt (111). Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1991, 9(3): 1789–1792

    Article  CAS  Google Scholar 

  32. Shin E W, Kang J H, Kim W J, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: the origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1–2): 161–172

    Article  CAS  Google Scholar 

  33. Duca D, Frusteri F, Parmaliana A, Deganello G. Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts. Applied Catalysis A, General, 1996, 146(2): 269–284

    Article  CAS  Google Scholar 

  34. Duca D, Arena F, Parmaliana A, Deganello G. Hydrogenation of acetylene in ethylene rich feedstocks: comparison between palladium catalysts supported on pumice and alumina. Applied Catalysis A, General, 1998, 172(2): 207–216

    Article  CAS  Google Scholar 

  35. Larsson M, Jansson J, Asplund S. Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst. Journal of Catalysis, 1996, 162(2): 365–367

    Article  CAS  Google Scholar 

  36. Larsson M, Jansson J, Asplund S. The role of coke in acetylene hydrogenation on Pd/α-Al2O3. Journal of Catalysis, 1998, 178(1): 49–57

    Article  CAS  Google Scholar 

  37. Park Y H, Price G L. Temperature-programmed-reaction study on the effect of carbon monoxide on the acetylene reaction over palladium/alumina. Industrial & Engineering Chemistry Research, 1991, 30(8): 1700–1707

    Article  CAS  Google Scholar 

  38. Park Y H, Price G L. Deuterium tracer study on the effect of carbon monoxide on the selective hydrogenation of acetylene over palladium/alumina. Industrial & Engineering Chemistry Research, 1991, 30(8): 1693–1699

    Article  CAS  Google Scholar 

  39. Sheth P A, Neurock M, Smith C M. A first-principles analysis of acetylene hydrogenation over Pd (111). Journal of Physical Chemistry B, 2003, 107(9): 2009–2017

    Article  CAS  Google Scholar 

  40. Borodziński A, Cybulski A. The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits. Applied Catalysis A, General, 2000, 198(1–2): 51–66

    Article  Google Scholar 

  41. Rose M, Mitsui T, Dunphy J, Borg A, Ogletree D, Salmeron M, Sautet P. Ordered structures of CO on Pd (111) studied by STM. Surface Science, 2002, 512(1–2): 48–60

    Article  CAS  Google Scholar 

  42. He Y, Fan J, Feng J, Luo C, Yang P, Li D. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties. Journal of Catalysis, 2015, 331: 118–127

    Article  CAS  Google Scholar 

  43. Cao Y, Sui Z, Zhu Y, Zhou X, Chen D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance. ACS Catalysis, 2017, 7(11): 7835–7846

    Article  CAS  Google Scholar 

  44. Trimm D L, Liu I O, Cant N W. The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst. Journal of Molecular Catalysis A Chemical, 2009, 307(1–2): 13–20

    Article  CAS  Google Scholar 

  45. Bazzazzadegan H, Kazemeini M, Rashidi A. A high performance multi-walled carbon nanotube-supported palladium catalyst in selective hydrogenation of acetylene-ethylene mixtures. Applied Catalysis A, General, 2011, 399(1–2): 184–190

    Article  CAS  Google Scholar 

  46. Sarkany A, Horvath A, Beck A. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Applied Catalysis A, General, 2002, 229(1–2): 117–125

    Article  CAS  Google Scholar 

  47. Imbihl R, Behm R, Schlögl R. Bridging the pressure and material gap in heterogeneous catalysis. Physical Chemistry Chemical Physics, 2007, 9(27): 3459–3459

    Article  CAS  PubMed  Google Scholar 

  48. Molero H, Bartlett B, Tysoe W. The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence. Journal of Catalysis, 1999, 181(1): 49–56

    Article  CAS  Google Scholar 

  49. Inoue Y, Yasumori I. Pressure jump and isotope replacement studies of acetylene hydrogenation on palladium surface. Journal of Physical Chemistry, 1971, 75(7): 880–887

    Article  CAS  Google Scholar 

  50. Riyapan S, Zhang Y, Wongkaew A, Pongthawornsakun B, Monnier J R, Panpranot J. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene. Catalysis Science & Technology, 2016, 6(14): 5608–5617

    Article  CAS  Google Scholar 

  51. Parker S F, Walker H C, Callear S K, Grünewald E, Petzold T, Wolf D, Möbus K, Adam J, Wieland S D, Jiménez-Ruiz M, et al. The effect of particle size, morphology and support on the formation of palladium hydride in commercial catalysts. Chemical Science (Cambridge), 2019, 10(2): 480–489

    Article  CAS  Google Scholar 

  52. Torres D, Cinquini F, Sautet P. Pressure and temperature effects on the formation of a Pd/C surface carbide: insights into the role of Pd/C as a selective catalytic state for the partial hydrogenation of acetylene. Journal of Physical Chemistry C, 2013, 117(21): 11059–11065

    Article  CAS  Google Scholar 

  53. Guo Z, Huang Q, Luo S, Chu W. Atmospheric discharge plasma enhanced preparation of Pd/TiO2 catalysts for acetylene selective hydrogenation. Topics in Catalysis, 2017, 60(12–14): 1009–1015

    Article  CAS  Google Scholar 

  54. Guo Z, Liu Y, Liu Y, Chu W. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene. Applied Surface Science, 2018, 442: 736–741

    Article  CAS  Google Scholar 

  55. Hong J, Chu W, Chen M, Wang X, Zhang T. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catalysis Communications, 2007, 8(3): 593–597

    Article  CAS  Google Scholar 

  56. Gigola C, Aduriz H, Bodnariuk P. Particle size effect in the hydrogenation of acetylene under industrial conditions. Applied Catalysis, 1986, 27(1): 133–144

    Article  CAS  Google Scholar 

  57. Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352

    Article  CAS  PubMed  Google Scholar 

  58. Den Hartog A, Deng M, Jongerius F, Ponec V. Hydrogenation of acetylene over various group VIII metals: effect of particle size and carbonaceous deposits. Journal of Molecular Catalysis, 1990, 60(1): 99–108

    Article  CAS  Google Scholar 

  59. Huang F, Deng Y, Chen Y, Cai X, Peng M, Jia Z, Ren P, Xiao D, Wen X, Wang N, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. Journal of the American Chemical Society, 2018, 140(41): 13142–13146

    Article  CAS  PubMed  Google Scholar 

  60. Armbrüster M, Kovnir K, Behrens M, Teschner D, Grin Y, Schlögl R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. Journal of the American Chemical Society, 2010, 132(42): 14745–14747

    Article  PubMed  CAS  Google Scholar 

  61. Zhou S, Shang L, Zhao Y, Shi R, Waterhouse G I, Huang Y C, Zheng L, Zhang T. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Advanced Materials, 2019, 31(18): 1900509–1900515

    Article  CAS  Google Scholar 

  62. Cao Y, Fu W, Sui Z, Duan X, Chen D, Zhou X. Kinetics insights and active sites discrimination of Pd-catalyzed selective hydrogenation of acetylene. Industrial & Engineering Chemistry Research, 2019, 58(5): 1888–1895

    Article  CAS  Google Scholar 

  63. Komhom S, Mekasuwandumrong O, Praserthdam P, Panpranot J. Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catalysis Communications, 2008, 10(1): 86–91

    Article  CAS  Google Scholar 

  64. McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135

    Article  CAS  Google Scholar 

  65. McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890

    Article  CAS  Google Scholar 

  66. Meunier F, Maffre M, Schuurman Y, Colussi S, Trovarelli A. Acetylene semi-hydrogenation over Pd-Zn/CeO2: relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105: 52–55

    Article  CAS  Google Scholar 

  67. Albani D, Capdevila-Cortada M, Vilé G, Mitchell S, Martin O, López N, Pérez-Ramírez J. Semihydrogenation of acetylene on indium oxide: proposed single-ensemble catalysis. Angewandte Chemie International Edition, 2017, 56(36): 10755–10760

    Article  CAS  PubMed  Google Scholar 

  68. Kuhn M, Lucas M, Claus P. Long-time stability vs deactivation of Pd-Ag/Al2O3 egg-shell catalysts in selective hydrogenation of acetylene. Industrial & Engineering Chemistry Research, 2015, 54(26): 6683–6691

    Article  CAS  Google Scholar 

  69. Azizi Y, Petit C, Pitchon V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. Journal of Catalysis, 2008, 256(2): 338–344

    Article  CAS  Google Scholar 

  70. Jia J, Haraki K, Kondo J N, Domen K, Tamaru K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. Journal of Physical Chemistry B, 2000, 104(47): 11153–11156

    Article  CAS  Google Scholar 

  71. Kameoka S, Krajčí M, Tsai A P. Highly selective semi-hydrogenation of acetylene over porous gold with twin boundary defects. Applied Catalysis A, General, 2019, 569: 101–109

    Article  CAS  Google Scholar 

  72. Lee J W, Liu X, Mou C Y. Selective hydrogenation of acetylene over SBA-15 supported Au-Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914

    Article  CAS  Google Scholar 

  73. Liu X, Mou C Y, Lee S, Li Y, Secrest J, Jang B W L. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene. Journal of Catalysis, 2012, 285(1): 152–159

    Article  CAS  Google Scholar 

  74. Peng S, Sun X, Sun L, Zhang M, Zheng Y, Su H, Qi C. Selective Hydrogenation of acetylene over gold nanoparticles supported on CeO2 pretreated under different atmospheres. Catalysis Letters, 2019, 149(2): 465–472

    Article  CAS  Google Scholar 

  75. Pongthawornsakun B, Mekasuwandumrong O, Aires F J C S, Büchel R, Baiker A, Pratsinis S E, Panpranot J. Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Applied Catalysis A, General, 2018, 549: 1–7

    Article  CAS  Google Scholar 

  76. Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426

    Article  CAS  Google Scholar 

  77. Rodríguez J, Marchi A, Borgna A, Monzón A. Effect of Zn content on catalytic activity and physicochemical properties of Ni-based catalysts for selective hydrogenation of acetylene. Journal of Catalysis, 1997, 171(1): 268–278

    Article  Google Scholar 

  78. Chen Y, Chen J. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: promotional effect of In. Applied Surface Science, 2016, 387: 16–27

    Article  CAS  Google Scholar 

  79. Riley C, De La Riva A, Zhou S, Wan Q, Peterson E, Artyushkova K, Farahani M D, Friedrich H B, Burkemper L, Atudorei N V, et al. Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation. ChemCatChem, 2019, 11(5): 1526–1533

    Article  CAS  Google Scholar 

  80. Pei G X, Liu X Y, Wang A, Su Y, Li L, Zhang T. Selective hydrogenation of acetylene in an ethylene-rich stream over silica supported Ag-Ni bimetallic catalysts. Applied Catalysis A, General, 2017, 545: 90–96

    Article  CAS  Google Scholar 

  81. Trimm D L, Liu I O, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1–2): 58–64

    Article  CAS  Google Scholar 

  82. Wang L, Li F, Chen Y, Chen J. Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound. Journal of Energy Chemistry, 2019, 29: 40–49

    Article  Google Scholar 

  83. Matselko O, Zimmermann R R, Ormeci A, Burkhardt U, Gladyshevskii R, Grin Y, Armbrüster M. Revealing electronic influences in the semihydrogenation of acetylene. Journal of Physical Chemistry C, 2018, 122(38): 21891–21896

    Article  CAS  Google Scholar 

  84. Köhler D, Heise M, Baranov A I, Luo Y, Geiger D, Ruck M, Armbrüster M. Synthesis of BiRh nanoplates with superior catalytic performance in the semihydrogenation of acetylene. Chemistry of Materials, 2012, 24(9): 1639–1644

    Article  CAS  Google Scholar 

  85. Hu M, Zhang J, Zhu W, Chen Z, Gao X, Du X, Wan J, Zhou K, Chen C, Li Y. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11(2): 905–912

    Article  CAS  Google Scholar 

  86. Hu M, Zhao S, Liu S, Chen C, Chen W, Zhu W, Liang C, Cheong W C, Wang Y, Yu Y, et al. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Advanced Materials, 2018, 30(33): 1801878–1801884

    Article  CAS  Google Scholar 

  87. Hu M, Yang W, Liu S, Zhu W, Li Y, Hu B, Chen Z, Shen R, Cheong W C, Wang Y, et al. Topological self-template directed synthesis of multi-shelled intermetallic Ni3Ga hollow micro-spheres for the selective hydrogenation of alkyne. Chemical Science (Cambridge), 2019, 10(2): 614–619

    Article  CAS  Google Scholar 

  88. Primo A, Neatu F, Florea M, Parvulescu V, Garcia H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 2014, 5(1): 1–9

    Article  CAS  Google Scholar 

  89. Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angewandte Chemie International Edition, 2015, 54(37): 10889–10893

    Article  CAS  PubMed  Google Scholar 

  90. Guilin Z, Puguang W, Jiang Z, Pinliang Y, Can L. Selective hydrogenation of acetylene over a MoP catalyst. Chinese Journal of Catalysis, 2011, 32(1–2): 27–30

    Google Scholar 

  91. Borodziński A. The effect of palladium particle size on the kinetics of hydrogenation of acetylene-ethylene mixtures over Pd/SiO2 catalysts. Catalysis Letters, 2001, 71(3–4): 169–175

    Article  Google Scholar 

  92. Asplund S. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation. Journal of Catalysis, 1996, 158(1): 267–278

    Article  CAS  Google Scholar 

  93. Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–154

    Article  CAS  Google Scholar 

  94. Leviness S, Nair V, Weiss A H, Schay Z, Guczi L. Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts. Journal of Molecular Catalysis, 1984, 25(1–3): 131–140

    Article  CAS  Google Scholar 

  95. McGown W T, Kemball C, Whan D A, Scurrell M S. Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static system. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1977, 73: 632–647

    Article  CAS  Google Scholar 

  96. Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227

    Article  CAS  Google Scholar 

  97. Panpranot J, Kontapakdee K, Praserthdam P. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. Journal of Physical Chemistry B, 2006, 110(15): 8019–8024

    Article  CAS  PubMed  Google Scholar 

  98. Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W, Mou C Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051

    Article  CAS  Google Scholar 

  99. Pei G X, Liu X Y, Wang A, Lee A F, Isaacs M A, Li L, Pan X, Yang X, Wang X, Tai Z, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catalysis, 2015, 5(6): 3717–3725

    Article  CAS  Google Scholar 

  100. Ryndin Y A, Stenin M, Boronin A, Bukhtiyarov V, Zaikovskii V. Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Applied Catalysis, 1989, 54(1): 277–288

    Article  CAS  Google Scholar 

  101. Tracey S, Palermo A, Vazquez J P H, Lambert R M. In situ electrochemical promotion by sodium of the selective hydrogenation of acetylene over platinum. Journal of Catalysis, 1998, 179(1): 231–240

    Article  CAS  Google Scholar 

  102. Xu Y, Jiang Y, Xu H, Wang Q, Huang W, He H, Zhai Y, Di S, Guo L, Xu X, et al. Highly selectivity catalytic hydrogenation of acetylene on Al2O3 supported palladium-imidazolium based ionic liquid phase. Applied Catalysis A, General, 2018, 567: 12–19

    Article  CAS  Google Scholar 

  103. Zhang Q, Li J, Liu X, Zhu Q. Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Applied Catalysis A, General, 2000, 197(2): 221–228

    Article  CAS  Google Scholar 

  104. Bond G C. Supported metal catalysts: some unsolved problems. Chemical Society Reviews, 1991, 20(4): 441–475

    Article  CAS  Google Scholar 

  105. Bugaev A L, Guda A A, Lazzarini A, Lomachenko K A, Groppo E, Pellegrini R, Piovano A, Emerich H, Soldatov A V, Bugaev L A, et al. In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catalysis Today, 2017, 283: 119–126

    Article  CAS  Google Scholar 

  106. Vilé G, Pérez-Ramírez J. Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6(22): 13476–13482

    Article  PubMed  CAS  Google Scholar 

  107. Luo Y, Alarcón Villaseca S, Friedrich M, Teschner D, Knop-Gericke A, Armbrüster M. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds. Journal of Catalysis, 2016, 338: 265–272

    Article  CAS  Google Scholar 

  108. Vignola E, Steinmann S N, Le Mapihan K, Vandegehuchte B D, Curulla D, Sautet P. Acetylene adsorption on Pd-Ag alloys: evidence for limited island formation and strong reverse segregation from Monte Carlo simulations. Journal of Physical Chemistry C, 2018, 122(27): 15456–15463

    Article  CAS  Google Scholar 

  109. Feng Q, Zhao S, Wang Y, Dong J, Chen W, He D, Wang D, Yang J, Zhu Y, Zhu H, et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. Journal of the American Chemical Society, 2017, 139(21): 7294–7301

    Article  CAS  PubMed  Google Scholar 

  110. Menezes W, Altmann L, Zielasek V, Thiel K, Bäumer M. Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 300: 125–135

    Article  CAS  Google Scholar 

  111. Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3–4): 159–164

    Article  CAS  Google Scholar 

  112. López N, Vargas-Fuentes C. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chemical Communications, 2012, 48(10): 1379–1391

    Article  PubMed  Google Scholar 

  113. Krajcí M, Hafner J. Selective semi-hydrogenation of acetylene: atomistic scenario for reactions on the polar threefold surfaces of GaPd. Journal of Catalysis, 2014, 312: 232–248

    Article  CAS  Google Scholar 

  114. Bridier B, Hevia M A, López N, Pérez-Ramírez J. Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. Journal of Catalysis, 2011, 278(1): 167–172

    Article  CAS  Google Scholar 

  115. Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30

    Article  CAS  Google Scholar 

  116. Kruppe C M, Krooswyk J D, Trenary M. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu (111) single-atom alloy. ACS Catalysis, 2017, 7(12): 8042–8049

    Article  CAS  Google Scholar 

  117. Miegge P, Rousset J, Tardy B, Massardier J, Bertolini J. Pd1Ni99 and Pd5Ni95: Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. Journal of Catalysis, 1994, 149(2): 404–413

    Article  CAS  Google Scholar 

  118. Long Y, Li J, Wu L, Wang Q, Liu Y, Wang X, Song S, Zhang H. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Research, 2019, 12(4): 869–875

    Article  CAS  Google Scholar 

  119. Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angewandte Chemie, 2020, 132(9): 3679–3686

    Article  Google Scholar 

  120. Lorenz H, Zhao Q, Turner S, Lebedev O I, Van Tendeloo G, Klötzer B, Rameshan C, Pfaller K, Konzett J, Penner S. Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study. Applied Catalysis A, General, 2010, 381(1–2): 242–252

    Article  CAS  Google Scholar 

  121. Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angewandte Chemie, 2020, 132(28): 11744–11749

    Article  Google Scholar 

  122. Albani D, Shahrokhi M, Chen Z, Mitchell S, Hauert R, López N, Pérez-Ramírez J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9(1): 1–11

    Article  CAS  Google Scholar 

  123. Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catalysis, 2014, 4(11): 4065–4069

    Article  CAS  Google Scholar 

  124. Xing Z, Liu Q, Asiri A M, Sun X. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicro-particles. ACS Catalysis, 2014, 5(1): 145–149

    Article  CAS  Google Scholar 

  125. Shao L, Zhang W, Armbrüster M, Teschner D, Girgsdies F, Zhang B, Timpe O, Friedrich M, Schlögl R, Su D S. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10231–10235

    Article  CAS  PubMed  Google Scholar 

  126. Fang P, Tang Z J, Huang J H, Cen C P, Tang Z X, Chen X B. Using sewage sludge as a denitration agent and secondary fuel in a cement plant: a case study. Fuel Processing Technology, 2015, 137: 1–7

    Article  CAS  Google Scholar 

  127. Bauer M, Schoch R, Shao L, Zhang B, Knop-Gericke A, Willinger M, Schlögl R, Teschner D. Structure-activity studies on highly active palladium hydrogenation catalysts by X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2012, 116(42): 22375–22385

    Article  CAS  Google Scholar 

  128. Bruix A, Rodriguez J A, Ramírez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2 (111) and Pt/CeOx/TiO2 (110) catalysts. Journal of the American Chemical Society, 2012, 134(21): 8968–8974

    Article  CAS  PubMed  Google Scholar 

  129. Zhao J, Chen H, Xu J, Shen J. Effect of surface acidic and basic properties of the supported nickel catalysts on the hydrogenation of pyridine to piperidine. Journal of Physical Chemistry C, 2013, 117(20): 10573–10580

    Article  CAS  Google Scholar 

  130. Hoxha F, Schimmoeller B, Cakl Z, Urakawa A, Mallat T, Pratsinis S E, Baiker A. Influence of support acid-base properties on the platinum-catalyzed enantioselective hydrogenation of activated ketones. Journal of Catalysis, 2010, 271(1): 115–124

    Article  CAS  Google Scholar 

  131. Burton P D, Boyle T J, Datye A K. Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149

    Article  CAS  Google Scholar 

  132. Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299

    Article  CAS  Google Scholar 

  133. Sa J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095

    Article  CAS  PubMed  Google Scholar 

  134. Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293

    Article  CAS  PubMed  Google Scholar 

  135. Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: new mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156

    Article  CAS  Google Scholar 

  136. Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: role of low-coordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544

    Article  CAS  Google Scholar 

  137. Tew M W, Nachtegaal M, Janousch M, Huthwelker T, van Bokhoven J A. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L 3 edge XAS. Physical Chemistry Chemical Physics, 2012, 14(16): 5761–5768

    Article  CAS  PubMed  Google Scholar 

  138. Vogel W, He W, Huang Q H, Zou Z, Zhang X G, Yang H. Palladium nanoparticles “breathe” hydrogen: a surgical view with X-ray diffraction. International Journal of Hydrogen Energy, 2010, 35(16): 8609–8620

    Article  CAS  Google Scholar 

  139. Soldatov A, Della Longa S, Bianconi A. Relevant role of hydrogen atoms in the XANES of Pd hydride: evidence of hydrogen induced unoccupied states. Solid State Communications, 1993, 85(10): 863–868

    Article  CAS  Google Scholar 

  140. D’Angelo P, Benfatto M, Della Longa S, Pavel N. Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions. Physical Review. B, 2002, 66(6): 064209–064216

    Article  CAS  Google Scholar 

  141. Balde C P, Mijovilovich A E, Koningsberger D C, van der Eerden A M, Smith A D, de Jong K P, Bitter J H. XAFS study of the Al K-edge in NaAlH4. Journal of Physical Chemistry C, 2007, 111(31): 11721–11725

    Article  CAS  Google Scholar 

  142. Mino L, Agostini G, Borfecchia E, Gianolio D, Piovano A, Gallo E, Lamberti C. Low-dimensional systems investigated by X-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. Journal of Physics. D, Applied Physics, 2013, 46(42): 423001–423074

    Article  CAS  Google Scholar 

  143. Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850

    Article  CAS  PubMed  Google Scholar 

  144. van Bokhoven J A, Lamberti C. Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 2014, 277: 275–290

    Article  CAS  Google Scholar 

  145. Guda S A, Guda A A, Soldatov M A, Lomachenko K A, Bugaev A L, Lamberti C, Gawelda W, Bressler C, Smolentsev G, Soldatov A V, et al. Optimized finite difference method for the full-potential XANES simulations: application to molecular adsorption geometries in MOFs and metal-ligand intersystem crossing transients. Journal of Chemical Theory and Computation, 2015, 11(9): 4512–4521

    Article  CAS  PubMed  Google Scholar 

  146. Langhammer C, Zhdanov V P, Zoric I, Kasemo B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chemical Physics Letters, 2010, 488(1–3): 62–66

    Article  CAS  Google Scholar 

  147. Bugaev A L, Guda A A, Lomachenko K A, Srabionyan V V, Bugaev L A, Soldatov A V, Lamberti C, Dmitriev V P, van Bokhoven J A. Temperature- and pressure-dependent hydrogen concentration in supported PdHx nanoparticles by Pd K-edge X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2014, 118(19): 10416–10423

    Article  CAS  Google Scholar 

  148. Bugaev A L, Srabionyan V V, Soldatov A V, Bugaev L A, van Bokhoven J A. The role of hydrogen in formation of Pd XANES in Pd-nanoparticles. Journal of Physics: Conference Series, 2013, 430: 012028

    CAS  Google Scholar 

  149. Yamauchi M, Ikeda R, Kitagawa H, Takata M. Nanosize effects on hydrogen storage in palladium. Journal of Physical Chemistry C, 2008, 112(9): 3294–3299

    Article  CAS  Google Scholar 

  150. Shabaev A, Papaconstantopoulos D, Mehl M, Bernstein N. First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system. Physical Review. B, 2010, 81(18): 184103–184112

    Article  CAS  Google Scholar 

  151. Shegai T, Langhammer C. Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scatteringspectroscopy. Advanced Materials, 2011, 23(38): 4409–4414

    Article  CAS  PubMed  Google Scholar 

  152. Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89

    Article  CAS  PubMed  Google Scholar 

  153. Stacchiola D, Molero H, Tysoe W. Palladium-catalyzed cyclotrimerization and hydrogenation: from ultrahigh vacuum to high-pressure catalysis. Catalysis Today, 2001, 65(1): 3–11

    Article  CAS  Google Scholar 

  154. García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102

    Article  CAS  Google Scholar 

  155. Narehood D, Kishore S, Goto H, Adair J H, Nelson J, Gutierrez H, Eklund P. X-ray diffraction and H-storage in ultra-small palladium particles. International Journal of Hydrogen Energy, 2009, 34(2): 952–960

    Article  CAS  Google Scholar 

  156. Borodziński A, Janko A. Flow reactor for kinetic studies with simultaneous X-ray phase analysis of a catalyst. Reaction Kinetics and Catalysis Letters, 1977, 7(2): 163–169

    Article  Google Scholar 

  157. Frackiewicz A. Hydrogenation of ethylene on thin films of palladium and palladium hydride. 1977

  158. Teschner D, Vass E, Hävecker M, Zafeiratos S, Schnörch P, Sauer H, Knop-Gericke A, Schlögl R, Chamam M, Wootsch A. Alkyne hydrogenation over Pd catalysts: a new paradigm. Journal of Catalysis, 2006, 242(1): 26–37

    Article  CAS  Google Scholar 

  159. Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 275–286

    Article  CAS  Google Scholar 

  160. Pachulski A, Schödel R, Claus P. Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 400(1–2): 14–24

    Article  CAS  Google Scholar 

  161. Liu R J, Crozier P, Smith C, Hucul D, Blackson J, Salaita G. Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts. Applied Catalysis A, General, 2005, 282(1–2): 111–121

    Article  CAS  Google Scholar 

  162. Ahn I Y, Lee J H, Kum S S, Moon S H. Formation of C4 species in the deactivation of a Pd/SiO2 catalyst during the selective hydrogenation of acetylene. Catalysis Today, 2007, 123(1–4): 151–157

    Article  CAS  Google Scholar 

  163. Bolarinwa Ayodele O, Vinati S, Barborini E, Boddapati L, El Hajraoui K, Kröhnert J, Deepak F L, Trunschke A, Kolen’ko Y V. Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria. Catalysis Science & Technology, 2020, 10(22): 7471–7475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olumide B. Ayodele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shittu, T.D., Ayodele, O.B. Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook. Front. Chem. Sci. Eng. 16, 1031–1059 (2022). https://doi.org/10.1007/s11705-021-2113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2113-3

Keywords

Navigation