Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The concept of active site in heterogeneous catalysis

Abstract

Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning — and deduce the validity and, therefore, usefulness — of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a ‘turnover frequency’ and explaining catalytic performance in terms of ‘structure sensitivity’ or ‘structure insensitivity’. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examining catalytic activity from an active site perspective.
Fig. 2: Examples of catalysis arranged by type of active site.
Fig. 3: Geometric, electronic and confinement effects combine to dominate the activity of an active site in heterogeneous catalysis.
Fig. 4: The differences between the Langmuir and Taylor schools of thought.
Fig. 5: Examples in support of the Langmuir school of thought.
Fig. 6: Literature examples illustrating the complexity and diversity of the active site along the Taylor school of thought.
Fig. 7: Energy profiles of different CO2 hydrogenation pathways over nickel.
Fig. 8: Schematic illustrating the inherent ambiguity in assigning an active site.
Fig. 9: Overview of CO2 reduction over SiO2-supported Ni.

Similar content being viewed by others

References

  1. Statista. Global Chemical Industry Revenue 2019 (Statista, 2019).

  2. de Jong, K. P. in Synthesis of Solid Catalysts (ed. de Jong, K. P.) 111–134 (Wiley, 2009).

  3. Kung, H. H. & Kung, M. C. En route to complete design of heterogeneous catalysts. Top. Catal. 34, 77–83 (2005).

    CAS  Google Scholar 

  4. Zaera, F. The new materials science of catalysis: toward controlling selectivity of the active site. J. Phys. Chem. Lett. 1, 621–627 (2010).

    CAS  Google Scholar 

  5. Davis, M. E. Molecular design of heterogeneous catalysts. Stud. Surf. Sci. Catal. 130, 49–59 (2000).

    Google Scholar 

  6. Hernández Mejía, C., van Deelen, T. W. & de Jong, K. P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nat. Commun. 9, 4459 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 42, 2746–2762 (2013).

    CAS  PubMed  Google Scholar 

  8. Meirer, F. & Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 3, 324–340 (2018).

    Google Scholar 

  9. van Schrojenstein-Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    PubMed  Google Scholar 

  10. Weckhuysen, B. M. Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 39, 4557–4559 (2010).

    CAS  Google Scholar 

  11. van Ravenhorst, I. K. et al. Capturing the genesis of an active Fischer–Tropsch synthesis catalyst with operando X-ray nanospectroscopy. Angew. Chem. Int. Ed. 57, 11957–11962 (2018).

    Google Scholar 

  12. Vogt, C. et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 127–134 (2018).

    CAS  Google Scholar 

  13. Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    PubMed  Google Scholar 

  14. Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 34, 11642–11645 (2017).

    Google Scholar 

  15. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3. Science 336, 893–898 (2012).

    CAS  PubMed  Google Scholar 

  16. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    CAS  PubMed  Google Scholar 

  17. Sabatier, P. & Senderens, J.-B. Hydrogénation directe des oxydes du carbone en présence de divers métaux divisés. C. R. Acad. Sci. 134, 689–691 (1903).

    Google Scholar 

  18. Senderens, J.-B. & Sabatier, P. Nouvelles synthèses du méthane. C. R. Acad. Sci. 82, 514–516 (1902).

    Google Scholar 

  19. Fechete, I. Paul Sabatier – The father of the chemical theory of catalysis. C. R. Chim. 19, 1374–1381 (2016).

    CAS  Google Scholar 

  20. Müller, K., Fleige, M., Rachow, F. & Schmeißer, D. Sabatier based CO2-methanation of flue gas emitted by conventional power plants. Energy Procedia 40, 240–248 (2013).

    Google Scholar 

  21. Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, 1939).

  22. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tao, F. et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322, 932–934 (2008).

    CAS  PubMed  Google Scholar 

  24. Vendelbo, S. B. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014).

    CAS  PubMed  Google Scholar 

  25. Ertl, G. Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces. Science 254, 1750–1755 (1991).

    CAS  PubMed  Google Scholar 

  26. Armstrong, C. D. & Teixeira, A. R. Advances in dynamically controlled catalytic reaction engineering. React. Chem. Eng. 5, 2185–2203 (2020).

    CAS  Google Scholar 

  27. Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. Lond. A 108, 105–111 (1925).

    CAS  Google Scholar 

  28. Taylor, H. S. Fourth report of the committee on contact catalysis. J. Phys. Chem. 30, 145–171 (1926).

    Google Scholar 

  29. Taylor, H. S. The activation energy of adsorption processes. J. Am. Chem. Soc. 53, 578–597 (1931).

    CAS  Google Scholar 

  30. Ertl, G. et al. Handbook of Heterogeneous Catalysis (eds Ertl, G., Knozinger, H., Schuth, F. & Weitkamp, J.) (Wiley, 2008).

  31. Dumesic, J. A., Huber, G. W. & Boudart, M. in Handbook of Heterogeneous Catalysis 2nd edn (eds Ertl, G., Knozinger, H., Schuth, F. & Weitkamp, J.) (Wiley, 2008).

  32. Rase, H. F. Handbook of Commercial Catalysts: Heterogeneous Catalysts (CRC, 2000).

  33. Védrine, J. C. Revisiting active sites in heterogeneous catalysis: their structure and their dynamic behaviour. Appl. Catal. A Gen. 474, 40–50 (2014).

    Google Scholar 

  34. Somorjai, G. A. Active sites in heterogeneous catalysis. Adv. Catal. 26, 1–68 (1977).

    CAS  Google Scholar 

  35. Somorjai, G. A., McCrea, K. R. & Zhu, J. Active sites in heterogeneous catalysis: development of molecular concepts and future challenges. Top. Catal. 18, 157–166 (2002).

    CAS  Google Scholar 

  36. Desert, X., Carpentier, J. F. & Kirillov, E. Quantification of active sites in single-site group 4 metal olefin polymerization catalysis. Coord. Chem. Rev. 386, 50–68 (2019).

    CAS  Google Scholar 

  37. Shamiri, A. et al. The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7, 5069–5108 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Stürzel, M., Mihan, S. & Mülhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 116, 1398–1433 (2016).

    PubMed  Google Scholar 

  39. Hlatky, G. G. Single-site catalysts for olefin polymerization. Coord. Chem. Rev. 199, 235–329 (2000).

    CAS  Google Scholar 

  40. Velthoen, M. E. Z., Boereboom, J. M., Bulo, R. E. & Weckhuysen, B. M. Insights into the activation of silica-supported metallocene olefin polymerization catalysts by methylaluminoxane. Catal. Today 334, 223–230 (2019).

    CAS  Google Scholar 

  41. Bossers, K. W. et al. Correlated X-ray ptychography and fluorescence nano-tomography on the fragmentation behavior of an individual catalyst particle during the early stages of olefin polymerization. J. Am. Chem. Soc. 142, 3691–3695 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bossers et al. Heterogeneity in the fragmentation of ziegler catalyst particles during ethylene polymerization quantified by X‑ray nanotomography. JACS Au 1, 852–864 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yashima, T., Sato, K., Hayasaka, T. & Hara, N. Alkylation on synthetic zeolites. III. Alkylation of toluene with methanol and formaldehyde on alkali cation exchanged zeolites. J. Catal. 26, 303–312 (1972).

    CAS  Google Scholar 

  44. Angelici, C. et al. Ex situ and operando studies on the role of copper in Cu-promoted SiO2–MgO catalysts for the Lebedev ethanol-to-butadiene process. ACS Catal. 5, 6005–6015 (2015).

    CAS  Google Scholar 

  45. Sun, J. & Wang, Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal. 4, 1078–1090 (2014).

    CAS  Google Scholar 

  46. Pomalaza, G., Arango Ponton, P., Capron, M. & Dumeignil, F. Ethanol-to-butadiene: the reaction and its catalysts. Catal. Sci. Technol. 10, 4860–4911 (2020).

    CAS  Google Scholar 

  47. Makshina, E. V. et al. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem. Soc. Rev. 43, 7917–7953 (2014).

    CAS  PubMed  Google Scholar 

  48. Bin Samsudin, I., Zhang, H., Jaenicke, S. & Chuah, G. K. Recent advances in catalysts for the conversion of ethanol to butadiene. Chem. Asian J. 15, 4199–4214 (2020).

    Google Scholar 

  49. Angelici, C., Weckhuysen, B. M. & Bruijnincx, P. C. A. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6, 1595–1614 (2013).

    CAS  PubMed  Google Scholar 

  50. Brogaard, R. Y. et al. Ethene dimerization on zeolite-hosted Ni ions: reversible mobilization of the active site. ACS Catal. 9, 5645–5650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    CAS  PubMed  Google Scholar 

  52. Brogaard, R. Y. & Olsbye, U. Ethene oligomerization in Ni-containing zeolites: theoretical discrimination of reaction mechanisms. ACS Catal. 6, 1205–1214 (2016).

    CAS  Google Scholar 

  53. Hulea, V. & Fajula, F. Ni-exchanged AlMCM-41 — An efficient bifunctional catalyst for ethylene oligomerization. J. Catal. 225, 213–222 (2004).

    CAS  Google Scholar 

  54. Moussa, S., Concepcio, P. & Arribas, A. Nature of active nickel sites and initiation mechanism for ethylene oligomerization on heterogeneous Ni-beta catalysts. ACS Catal. 8, 3903–3912 (2018).

    CAS  Google Scholar 

  55. Wang, A. et al. Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nat. Commun. 10, 1137 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Borfecchia, E. et al. Cu-CHA–a model system for applied selective redox catalysis. Chem. Soc. Rev. 47, 8097–8133 (2018).

    CAS  PubMed  Google Scholar 

  57. Paolucci, C., Di Iorio, J. R., Ribeiro, F. H., Gounder, R. & Schneider, W. F. Catalysis science of NOx selective catalytic reduction with ammonia over Cu-SSZ-13 and Cu-SAPO-34. Adv. Catal. 59, 1–107 (2016).

    CAS  Google Scholar 

  58. Gordon, C. P. et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 586, 708–713 (2020).

    CAS  PubMed  Google Scholar 

  59. Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 44, 5780–5817 (2013).

    Google Scholar 

  60. Böller, B., Durner, K. M. & Wintterlin, J. The active sites of a working Fischer–Tropsch catalyst revealed by operando scanning tunnelling microscopy. Nat. Catal. 2, 1027–1030 (2019).

    Google Scholar 

  61. Nelson, N. C., Nguyen, M.-T., Glezakou, V.-A., Rousseau, R. & Szanyi, J. Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis. Nat. Catal. 2, 916–924 (2019).

    CAS  Google Scholar 

  62. Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    CAS  Google Scholar 

  63. Liu, K., Wang, A. & Zhang, T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2, 1165–1178 (2012).

    CAS  Google Scholar 

  64. Bowker, M. Automotive catalysis studied by surface science. Chem. Soc. Rev. 37, 2204–2211 (2008).

    CAS  PubMed  Google Scholar 

  65. Van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 46, 4347–4374 (2017).

    PubMed  Google Scholar 

  66. Alayon, E. M. C., Singh, J., Nachtegaal, M., Harfouche, M. & van Bokhoven, J. A. On highly active partially oxidized platinum in carbon monoxide oxidation over supported platinum catalysts. J. Catal. 263, 228–238 (2009).

    CAS  Google Scholar 

  67. Avakyan, L. A. et al. Evolution of the atomic structure of ceria-supported platinum nanocatalysts: formation of single layer platinum oxide and Pt–O–Ce and Pt–Ce linkages. J. Phys. Chem. C 120, 28057–28066 (2016).

    CAS  Google Scholar 

  68. Singh, J. et al. Generating highly active partially oxidized platinum during oxidation of carbon monoxide over Pt/Al2O3: in situ, time-resolved, and high-energy-resolution X-ray absorption spectroscopy. Angew. Chem. Int. Ed. 47, 9260–9264 (2008).

    CAS  Google Scholar 

  69. Velthoen, M. E. Z. et al. The multifaceted role of methylaluminoxane in metallocene-based olefin polymerization catalysis. Macromolecules 51, 343–355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Meirer, F. et al. Life and death of a single catalytic cracking particle. Sci. Adv. 1, e1400199 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Vogt, C. et al. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 10, 5330 (2018).

    Google Scholar 

  72. Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Oord, R., Schmidt, J. E. & Weckhuysen, B. M. Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3. Catal. Sci. Technol. 8, 1028–1038 (2018).

    CAS  Google Scholar 

  74. Thomas, J. M. Design and Application of Single-Site Heterogeneous Catalysts (Imperial College Press, 2012).

  75. Che, M. & Bennett, C. O. The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 36, 55–171 (1989).

    CAS  Google Scholar 

  76. Cratty, L. E. Jr. & Granato, A. V. Dislocations as “active sites” in heterogeneous catalysis. J. Chem. Phys. 26, 96–97 (1957).

    CAS  Google Scholar 

  77. Sosnovsry, H. M. C. The catalytic activity of silver crystals of various orientations after bombardment with positive ions. J. Phys. Chem. Solids 10, 304–310 (1959).

    Google Scholar 

  78. Farnsworth, H. E. & Woodcock, R. F. Radiation quenching, ion bombardment, and annealing of nickel and platinum for ethylene hydrogenation. Ind. Eng. Chem. 49, 258–260 (1957).

    CAS  Google Scholar 

  79. Spilners, A. & Smoluchowski, R. Reactivity of Solids (Elsevier, 1961).

  80. Louwen, J. N., Van Eijck, L., Vogt, C. & Vogt, E. T. C. Understanding the activation of ZSM-5 by phosphorus: localizing phosphate groups in the pores of phosphate-stabilized ZSM-5. Chem. Mater. 32, 9390–9403 (2020).

    CAS  Google Scholar 

  81. Stanciakova, K. & Weckhuysen, B. M. Water-active site interactions in zeolite and their relevance in catalysis. Trends Chem. 3, 456–468 (2021).

    CAS  Google Scholar 

  82. Derouane, E. G. The energetics of sorption by molecular sieves: surface curvature effects. Chem. Phys. Lett. 142, 200–204 (1987).

    CAS  Google Scholar 

  83. Derouane, E. G., Andre, J.-M. & Lucas, A. A. Curvature effects in physisorption microporous solids and molecular and catalysis sieves. J. Catal. 110, 58–73 (1988).

    CAS  Google Scholar 

  84. Ravi, M., Sushkevich, V. L. & van Bokhoven, J. A. On the location of Lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and Lewis acidity. Chem. Sci. 12, 4094–4103 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ravi, M., Sushkevich, V. L. & van Bokhoven, J. A. Towards a better understanding of Lewis acidic aluminium in zeolites. Nat. Mater. 19, 1047–1056 (2020).

    CAS  PubMed  Google Scholar 

  86. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  Google Scholar 

  87. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    CAS  Google Scholar 

  88. Fields, M. et al. Scaling relations for adsorption energies on doped molybdenum phosphide surfaces. ACS Catal. 7, 2528–2534 (2017).

    CAS  Google Scholar 

  89. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Latimer, A. A., Kakekhani, A., Kulkarni, A. R. & Nørskov, J. K. Direct methane to methanol: the selectivity-conversion limit and design strategies. ACS Catal. 8, 6894–6907 (2018).

    CAS  Google Scholar 

  91. Bhattacharjee, S., Waghmare, U. V. & Lee, S. C. An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Sci. Rep. 6, 35916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Larmier, K. et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal–support interface. Angew. Chem. Int. Ed. 56, 2318–2323 (2017).

    CAS  Google Scholar 

  93. Bus, E., Prins, R. & Bokhoven, J. A.van Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts. Catal. Commun. 8, 1397–1402 (2007).

    CAS  Google Scholar 

  94. Derouane, E. G., Andre, J. & Lucas, A. A. A simple van der Waals model for molecule-curved surface interactions in molecular-sized microporous solids. Chem. Phys. Lett. 137, 336–340 (1987).

    CAS  Google Scholar 

  95. Derycke, I. et al. Physisorption in confined geometry. J. Chem. Phys. 94, 4620–4627 (1991).

    CAS  Google Scholar 

  96. Sastre, G. & Corma, A. The confinement effect in zeolites. J. Mol. Catal. A Chem. 305, 3–7 (2009).

    CAS  Google Scholar 

  97. Vogt, E. T. C., Kresge, C. T. & Vartuli, J. C. Beyond twelve membered rings. Stud. Surf. Sci. Catal. 137, 1003–1027 (2001).

    Google Scholar 

  98. Fraissard, J. in Studies in Surface Science and Catalysis Vol. 5 (eds Iwasawa, Y., Oyama, N. & X Kunieda, H.) 343–350 (Elsevier, 1980).

  99. Derouane, E. G. Shape selectivity in catalysis by zeolites: the nest effect. J. Catal. 100, 541–544 (1986).

    CAS  Google Scholar 

  100. Gounder, R. & Iglesia, E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 49, 3491–3509 (2013).

    CAS  Google Scholar 

  101. Liu, Y. et al. Enhancing the catalytic activity of hydronium ions through constrained environments. Nat. Commun. 8, 14113 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Alizadeh, A. & McKenna, T. F. L. Particle growth during the polymerization of olefins on supported catalysts. Part 2: current experimental understanding and modeling progresses on particle fragmentation, growth, and morphology development. Macromol. React. Eng. 12, 1700027 (2018).

    Google Scholar 

  103. Fu, Q. & Bao, X. Confined microenvironment for catalysis control. Nat. Catal. 2, 834–836 (2019).

    CAS  Google Scholar 

  104. Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  PubMed  Google Scholar 

  105. Somorjai, G. A. & McCrea, K. Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl. Catal. A Gen. 222, 3–18 (2001).

    CAS  Google Scholar 

  106. Langmuir, I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).

    Google Scholar 

  107. Levy, R. B. The extraordinary life of Michel Boudart: a very personal perspective. J. Catal. https://doi.org/10.1016/j.jcat.2021.01.008 (2021).

    Article  Google Scholar 

  108. Ertl, G. Catalysis is a kinetic phenomenon: the legacy of Michel Boudart. J. Catal. https://doi.org/10.1016/j.jcat.2021.01.009 (2021).

    Article  Google Scholar 

  109. Boudart, M. Catalysis by supported metals. Adv. Catal. 20, 153–166 (1969).

    CAS  Google Scholar 

  110. Boudart, M. Heterogeneous catalysis by metals. J. Mol. Catal. 30, 27–38 (1985).

    CAS  Google Scholar 

  111. Eischens, R. P. & Pliskin, W. A. The infrared spectra of adsorbed molecules. Adv. Catal. 10, 1–56 (1958).

    CAS  Google Scholar 

  112. Mapes, J. E. & Eischens, R. P. The infrared spectra of ammonia chemisorbed on cracking catalysts. J. Phys. Chem. 279, 1950–1953 (1954).

    Google Scholar 

  113. Eischens, R. P. Infrared spectra of chemisorbed molecules. J. Chem. Educ. 35, 385–391 (1958).

    CAS  Google Scholar 

  114. Wolff, J., Papathanasiou, A. G., Kevrekidis, I. G., Rotermund, H. H. & Ertl, G. Spatiotemporal addressing of surface activity. Science 294, 134–137 (2001).

    CAS  PubMed  Google Scholar 

  115. Ertl, G. Reactions at surfaces: from atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    CAS  Google Scholar 

  116. Kleinle, G., Penka, V., Behm, R. J., Ertl, G. & Moritz, W. Structure determination of an adsorbate-induced multilayer reconstruction: (1×2)-H/Ni(110). Phys. Rev. Lett. 58, 148 (1987).

    CAS  PubMed  Google Scholar 

  117. Somorjai, G. A. The experimental evidence of the role of surface restructuring during catalytic reactions. Catal. Lett. 12, 17–34 (1992).

    CAS  Google Scholar 

  118. Somorjai, G. A., Contreras, A. M., Montano, M. & Rioux, R. M. Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. USA 103, 10577–10583 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Goodman, D. W. Model studies in catalysis using surface science probes. Chem. Rev. 95, 523–536 (1995).

    CAS  Google Scholar 

  120. Vang, R. T., Lauritsen, J. V., Lægsgaard, E. & Besenbacher, F. Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem. Soc. Rev. 37, 2191–2203 (2008).

    CAS  PubMed  Google Scholar 

  121. Liu, X., Madix, R. J. & Friend, C. M. Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. Chem. Soc. Rev. 37, 2243–2261 (2008).

    CAS  PubMed  Google Scholar 

  122. Qian, J., An, Q., Fortunelli, A., Nielsen, R. J. & Goddard, W. A. Reaction mechanism and kinetics for ammonia synthesis on the Fe(111) surface. J. Am. Chem. Soc. 140, 6288–6297 (2018).

    CAS  PubMed  Google Scholar 

  123. Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    CAS  PubMed  Google Scholar 

  124. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    CAS  PubMed  Google Scholar 

  125. Heine, C., Lechner, B. A. J., Bluhm, H. & Salmeron, M. Recycling of CO2: probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 138, 13246–13252 (2016).

    CAS  PubMed  Google Scholar 

  126. Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the “active sites” of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    CAS  Google Scholar 

  127. Lang, B., Joyner, R. W. & Somorjai, G. A. Low energy electron diffraction studies of high index crystal surfaces of platinum. Surf. Sci. 30, 440–453 (1972).

    CAS  Google Scholar 

  128. Somorjai, G. A. New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions. Appl. Surf. Sci. 121–122, 1–19 (1997).

    Google Scholar 

  129. Somorjai, G. A. Molecular concepts of heterogeneous catalysis. J. Mol. Struct. 424, 101–117 (1998).

    CAS  Google Scholar 

  130. Somorjai, G. A. The flexible surface: new techniques for molecular level studies of time dependent changes in metal surface structure and adsorbate structure during catalytic reactions. J. Mol. Catal. A Chem. 107, 39–53 (1996).

    CAS  Google Scholar 

  131. Eren, B., Weatherup, R. S., Liakakos, N., Somorjai, G. A. & Salmeron, M. Dissociative carbon dioxide adsorption and morphological changes on Cu(100) and Cu(111) at ambient pressures. J. Am. Chem. Soc. 138, 8207–8211 (2016).

    CAS  PubMed  Google Scholar 

  132. Greeley, J. P. Active site of an industrial catalyst. Science 336, 810–812 (2012).

    PubMed  Google Scholar 

  133. Somorjai, G. A. & Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 37, 2155–2162 (2008).

    CAS  PubMed  Google Scholar 

  134. Salmeron, M. & Eren, B. High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962–1006 (2020).

    PubMed  Google Scholar 

  135. Oosterbeek, H. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Phys. Chem. Chem. Phys. 9, 3570–3576 (2007).

    CAS  PubMed  Google Scholar 

  136. Woodruff, D. P. Bridging the pressure gap: Can we get local quantitative structural information at ‘near-ambient’ pressures? Surf. Sci. 652, 4–6 (2016).

    CAS  Google Scholar 

  137. Bordiga, S., Groppo, E., Agostini, G., Van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).

    CAS  PubMed  Google Scholar 

  138. Li, Y. et al. Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nat. Commun. 12, 914 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Barroo, C., Wang, Z. J., Schlögl, R. & Willinger, M. G. Imaging the dynamics of catalysed surface reactions by in situ scanning electron microscopy. Nat. Catal. 3, 30–39 (2020).

    CAS  Google Scholar 

  140. Ek, M., Ramasse, Q. M., Arnarson, L., Georg Moses, P. & Helveg, S. Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nat. Commun. 8, 305 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Ek, M. et al. Probing surface-sensitive redox properties of VOx/TiO2 catalyst nanoparticles. Nanoscale 13, 7266–7272 (2021).

    CAS  PubMed  Google Scholar 

  142. Goetze, J. et al. Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV–Vis spectroscopy. ACS Catal. 7, 4033–4046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Yarulina, I. et al. Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat. Chem. 10, 804–812 (2018).

    CAS  PubMed  Google Scholar 

  144. Olsbye, U. et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem. Soc. Rev. 44, 7155–7176 (2015).

    CAS  PubMed  Google Scholar 

  145. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–5831 (2012).

    CAS  Google Scholar 

  146. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    CAS  PubMed  Google Scholar 

  147. Delen, G., Monai, M., Meirer, F. & Weckhuysen, B. M. In situ nanoscale infrared spectroscopy of water adsorption on nanoislands of surface-anchored metal-organic frameworks. Angew. Chem. Int. Ed. 60, 1620–1624 (2021).

    CAS  Google Scholar 

  148. Wu, C. Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    CAS  PubMed  Google Scholar 

  149. Zou, N. et al. Cooperative communication within and between single nanocatalysts. Nat. Chem. 10, 607–614 (2018).

    CAS  PubMed  Google Scholar 

  150. Weckhuysen, B. M. Operando spectroscopy: fundamental and technical aspects of spectroscopy of catalysts under working conditions. Phys. Chem. Chem. Phys. 5, 1–9 (2003).

    Google Scholar 

  151. Moya-Cancino, J. G., Honkanen, A., Eerden, A. M. J. V. D. & Schaink, H. In-situ X-ray absorption near edge structure spectroscopy of a solid catalyst using a laboratory-based set-up. ChemCatChem 11, 1039–1044 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zimmermann, P. et al. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord. Chem. Rev. 423, 213466 (2020).

    CAS  Google Scholar 

  153. Azaiza-Dabbah, D. et al. Functional models of carbon monoxide dehydrogenase enzymes: molecular transition metal oxide electrocatalysts for the reversible carbon dioxide–carbon monoxide transformation. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202112915 (2021).

  154. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    CAS  PubMed  Google Scholar 

  155. Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Snyder, B. E. R. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536, 317–321 (2016).

    CAS  PubMed  Google Scholar 

  157. Castillo, R. G. et al. High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Cutsail, G. E. et al. High-resolution extended X-ray absorption fine structure analysis provides evidence for a Longer Fe···Fe distance in the Q intermediate of methane monooxygenase. J. Am. Chem. Soc. 140, 16807–16820 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Catlow, A. et al. Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H–Y zeolites). Chem. Phys. Lett. 188, 320–325 (1992).

    Google Scholar 

  160. Hartman, T. & Weckhuysen, B. M. Thermally stable TiO2 and SiO2 shell-isolated Au nanoparticles for in situ plasmon-enhanced Raman spectroscopy of hydrogenation catalysts. Chem. Eur. J. 24, 3733–3741 (2018).

    CAS  PubMed  Google Scholar 

  161. Hartman, T., Wondergem, C. S., Kumar, N., Berg, A. V. D. & Weckhuysen, B. M. Surface- and tip-enhanced Raman spectroscopy in catalysis. J. Phys. Chem. Lett. 7, 1570–1584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS  PubMed  Google Scholar 

  163. Hartman, T., Geitenbeek, R. G., Wondergem, C. S., Van Der Stam, W. & Weckhuysen, B. M. Operando nanoscale sensors in catalysis: all eyes on catalyst particles. ACS Nano 14, 3725–3735 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    CAS  Google Scholar 

  165. Ristanović, Z., Kubarev, A. V., Hofkens, J., Roeffaers, M. B. J. & Weckhuysen, B. M. Single molecule nanospectroscopy visualizes proton-transfer processes within a zeolite crystal. J. Am. Chem. Soc. 138, 13586–13596 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. Xu, W., Kong, J. S., Yeh, Y. T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).

    CAS  PubMed  Google Scholar 

  167. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    CAS  PubMed  Google Scholar 

  168. Zecevic, J., Vanbutsele, G., De Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–254 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    CAS  PubMed  Google Scholar 

  170. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  PubMed  Google Scholar 

  171. Kobozev, N. I. A theory of the formation of catalytically active “ensembles” on surfaces. I. Acta Physicochim USSR 9, 805 (1938).

    CAS  Google Scholar 

  172. van Hardeveld, R. & van Montfoort, A. The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum. Surf. Sci. 4, 396–430 (1966).

    Google Scholar 

  173. Fischer, N., Van Steen, E. & Claeys, M. Structure sensitivity of the Fischer–Tropsch activity and selectivity on alumina supported cobalt catalysts. J. Catal. 299, 67–80 (2013).

    CAS  Google Scholar 

  174. Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

    CAS  PubMed  Google Scholar 

  175. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Vogt, C., Weckhuysen, B. M. & Ruiz-Martínez, J. Effect of feedstock and catalyst impurities on the methanol-to-olefin reaction over H-SAPO-34. ChemCatChem 9, 183–194 (2017).

    CAS  PubMed  Google Scholar 

  177. Ravenhorst, I. K. V. et al. On the cobalt carbide formation in a Co/TiO2 Fischer–Tropsch synthesis catalyst as studied by high-pressure, long-term operando X‑ray absorption and diffraction. ACS Catal. 11, 2956–2967 (2021).

    PubMed  PubMed Central  Google Scholar 

  178. Zaera, F. The surface chemistry of heterogeneous catalysis: mechanisms, selectivity, and active sites. Chem. Rec. 5, 133–144 (2005).

    PubMed  Google Scholar 

  179. Yardimci, D., Serna, P. & Gates, B. C. Surface-mediated synthesis of dimeric rhodium catalysts on MgO: tracking changes in the nuclearity and ligand environment of the catalytically active sites by X-ray absorption and infrared spectroscopies. Chem. Eur. J. 19, 1235–1245 (2013).

    CAS  PubMed  Google Scholar 

  180. Kale, M. J. & Christopher, P. Utilizing quantitative in-situ FTIR spectroscopy to identify well-coordinated Pt atoms as the active site for CO oxidation on Al2O3‑supported Pt catalysts. ACS Catal. 6, 5599–5609 (2016).

    CAS  Google Scholar 

  181. Avanesian, T. et al. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017).

    CAS  PubMed  Google Scholar 

  182. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    CAS  PubMed  Google Scholar 

  183. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  PubMed  Google Scholar 

  184. Agnelli, M., Swaan, H. M., Marquez-Alvarez, C., Martin, G. A., & Mirodatos, C. CO hydrogenation on a nickel catalyst: II. A mechanistic study by transient kinetics and infrared spectroscopy. J. Catal. 175, 117–128 (1998).

    CAS  Google Scholar 

  185. Baurecht, D. & Fringeli, U. P. Quantitative modulated excitation Fourier transform infrared spectroscopy. Rev. Sci. Instrum. 72, 3782–3792 (2001).

    CAS  Google Scholar 

  186. König, C. F. J., Van Bokhoven, J. A., Schildhauer, T. J. & Nachtegaal, M. Quantitative analysis of modulated excitation X-ray absorption spectra: enhanced precision of EXAFS fitting. J. Phys. Chem. C 116, 19857–19866 (2012).

    Google Scholar 

  187. Chiarello, G. L., Nachtegaal, M., Marchionni, V., Quaroni, L. & Ferri, D. Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure. Rev. Sci. Instrum. 85, 074102 (2016).

    Google Scholar 

  188. Maeda, N., Meemken, F., Hungerbühler, K. & Baiker, A. Spectroscopic detection of active species on catalytic surfaces: steady-state versus transient method. Chimia 66, 664–667 (2012).

    CAS  PubMed  Google Scholar 

  189. Jin, R., Li, G., Sharma, S., Li, Y. & Du, X. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 121, 567–648 (2020).

    PubMed  Google Scholar 

  190. An, H. et al. Sub-second time-resolved surface enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

    CAS  Google Scholar 

  191. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2020).

    PubMed  PubMed Central  Google Scholar 

  192. Simon, G. H., Kley, C. S. & Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60, 2561–2568 (2021).

    CAS  Google Scholar 

  193. Pei, G. X. et al. Identification of photoexcited electron relaxation in a cobalt phosphide modified carbon nitride photocatalyst. ChemPhotoChem 5, 330–334 (2021).

    CAS  Google Scholar 

  194. Weckhuysen, B. M. Communicating catalysts. Nat. Chem. 10, 580–582 (2018).

    CAS  PubMed  Google Scholar 

  195. Ye, R., Hurlburt, T. J., Sabyrov, K., Alayoglu, S. & Somorjai, G. A. Molecular catalysis science: perspective on unifying the fields of catalysis. Proc. Natl Acad. Sci. USA 113, 5159–5166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaisance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).

    CAS  Google Scholar 

  197. She, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Google Scholar 

  198. Liu, L. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021).

    CAS  Google Scholar 

  199. Stangl, A., Muñoz-Rojas, D. & Burriel, M. In situ and operando characterisation techniques for solid oxide electrochemical cells: recent advances. J. Phys. Energy 3, 012001 (2021).

    CAS  Google Scholar 

  200. Jin, L. & Seifitokaldani, A. In situ spectroscopic methods for electrocatalytic CO2 reduction. Catalysts 10, 481 (2020).

    CAS  Google Scholar 

  201. Jaegers, N. R., Mueller, K. T., Wang, Y. & Hu, J. Z. Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Acc. Chem. Res. 53, 611–619 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Varsha, M. V. & Nageswaran, G. Operando X-ray spectroscopic techniques: a focus on hydrogen and oxygen evolution reactions. Front. Chem. 8, 23 (2020).

    CAS  Google Scholar 

  203. Fabbri, E., Abbott, D. F., Nachtegaal, M. & Schmidt, T. J. Operando X-ray absorption spectroscopy: a powerful tool toward water splitting catalyst development. Curr. Opin. Electrochem. 5, 20–26 (2017).

    CAS  Google Scholar 

  204. Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes (Springer, 2008).

  205. Vis, C. M., Smulders, L. C. J. & Bruijnincx, P. C. A. Tandem catalysis with antagonistic catalysts compartmentalized in the dispersed and continuous phases of a pickering emulsion. ChemSusChem 12, 2176–2180 (2019).

    CAS  PubMed  Google Scholar 

  206. Isaacs, M. A. et al. A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions. Nat. Catal. 3, 921–931 (2020).

    CAS  Google Scholar 

  207. Kikuchi, E., Nakano, H., Shimomura, K. & Morita, Y. Catalytic cracking of hydrocarbons with zeolite catalyst. Sekiyu Gakkaishi 28, 210–213 (1985).

    CAS  Google Scholar 

  208. Haneda, M., Watanabe, T., Kamiuchi, N. & Ozawa, M. Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl. Catal. B Environ. 142, 8–14 (2013).

    Google Scholar 

  209. Ristanović, Z. et al. Reversible and site-dependent proton-transfer in zeolites uncovered at the single-molecule level. J. Am. Chem. Soc. 140, 14195–14205 (2018).

    PubMed  PubMed Central  Google Scholar 

  210. Ristanović, Z. et al. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles. Angew. Chem. Int. Ed. 54, 1836–1840 (2015).

    Google Scholar 

  211. Vesely, A. M. et al. 3-D X-ray nanotomography reveals different carbon deposition mechanisms in a single catalyst particle. ChemCatChem 13, 2494–2507 (2021).

    CAS  Google Scholar 

  212. Bennett, C. O. & Che, M. Some geometric aspects of structure sensitivity. J. Catal. 120, 293–302 (1989).

    CAS  Google Scholar 

  213. van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009).

    PubMed  Google Scholar 

  214. Wei, J. & Iglesia, E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal. 225, 116–127 (2004).

    CAS  Google Scholar 

  215. Mark, M. & Maier, W. F. CO2 reforming of ethanol on supported Rh catalysts. J. Catal. 2, 4–5 (1996).

    Google Scholar 

  216. Efstathiou, A. M., Kladi, A., Tsipouriari, V. A. & Verykios, X. E. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts. J. Catal. 158, 64–75 (1996).

    CAS  Google Scholar 

  217. Wei, J. & Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B 108, 4094–4103 (2004).

    CAS  Google Scholar 

  218. Yu, J. et al. Facile synthesis of highly active Rh/Al2O3 steam reforming catalysts with preformed support by flame spray pyrolysis. Appl. Catal. B Environ. 198, 171–179 (2016).

    CAS  Google Scholar 

  219. Ramallo-López, J. M. et al. Complementary methods for cluster size distribution measurements: supported platinum nanoclusters in methane reforming catalysts. J. Mol. Catal. A Chem. 228, 299–307 (2005).

    Google Scholar 

  220. Feio, L. S. F. et al. The effect of ceria content on the properties of Pd/CeO2/Al2O3 catalysts for steam reforming of methane. Appl. Catal. A Gen. 316, 107–116 (2007).

    CAS  Google Scholar 

  221. Wei, J. & Iglesia, E. Isotopic and kinetic assessment of the mechanism of reactions of C4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal. 224, 370–383 (2004).

    CAS  Google Scholar 

  222. Bezemer, G. L. et al. Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006).

    CAS  PubMed  Google Scholar 

  223. Erdöhelyi, A., Pásztor, M. & Solymosi, F. Catalytic hydrogenation of CO2 over supported palladium. J. Catal. 98, 166–177 (1986).

    Google Scholar 

  224. Karelovic, A. & Ruiz, P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal. 301, 141–153 (2013).

    CAS  Google Scholar 

  225. Schlatter, J. C. & Boudart, M. Hydrogenation of ethylene on supported platinum. J. Catal. 24, 482–492 (1972).

    CAS  Google Scholar 

  226. Shaikhutdinov, S. H. et al. Structure–reactivity relationships on supported metal model catalysts: adsorption and reaction of ethene and hydrogen on Pd/Al2O3/NiAl(110). J. Catal. 200, 330–339 (2001).

    CAS  Google Scholar 

  227. Freund, H.-J. & Messmer, R. P. On the bonding and reactivity of CO2 on metal surfaces. Surf. Sci. 172, 1–30 (1986).

    CAS  Google Scholar 

  228. Rupprechter, G. Surface vibrational spectroscopy on noble metal catalysts from ultrahigh vacuum to atmospheric pressure. Ann. Rep. Prog. Chem. 100, 237–311 (2004).

    CAS  Google Scholar 

  229. Bañares, M. A., Guerrero-Pérez, M. O., Fierro, J. L. G. & Cortez, G. G. Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): a method for understanding the active centres of cations supported on porous materials. J. Mater. Chem. 12, 3337–3342 (2002).

    Google Scholar 

  230. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    CAS  Google Scholar 

  231. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    CAS  PubMed  Google Scholar 

  232. Bañares, M. A. Operando spectroscopy: the knowledge bridge to assessing structure–performance relationships in catalyst nanoparticles. Adv. Mater. 23, 5293–5301 (2011).

    PubMed  Google Scholar 

  233. Bañares, M. A. Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71–77 (2005).

    Google Scholar 

  234. Weckhuysen, B. M. Determining the active site in a catalytic process: operando spectroscopy is more than a buzzword. Phys. Chem. Chem. Phys. 5, 4351–4360 (2003).

    CAS  Google Scholar 

  235. Weckhuysen, B. M. Studying birth, life and death of catalytic solids with operando spectroscopy. Natl Sci. Rev. 2, 147–149 (2015).

    Google Scholar 

  236. Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M. & Gascon, J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat. Catal. 1, 398–411 (2018).

    CAS  Google Scholar 

  237. Mores, D., Kornatowski, J., Olsbye, U. & Weckhuysen, B. M. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity. Chem. Eur. J. 17, 2874–2884 (2011).

    CAS  PubMed  Google Scholar 

  238. Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F. & Weckhuysen, B. M. Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV–vis spectroscopy. ACS Catal. 8, 2060–2070 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Schmidt, J. E. et al. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography. Angew. Chem. Int. Ed. 55, 11173–11177 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

B.M.W. acknowledges financial support from the Netherlands Organization for Scientific Research (NWO) in the frame of a Gravitation programme (the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), www.mcec-researchcenter.nl), as well as from the Advanced Research Center (ARC) Chemical Buildings Blocks Consortium (CBBC), a public–private research consortium in the Netherlands (www.arc-cbbc.nl). C.V. acknowledges support from a Niels Stensen Fellowship and a VATAT fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Charlotte Vogt or Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks D. Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Turnover frequency

The turnover frequency is defined as the turnover unit per time. For most industrial applications, the turnover frequency is 10−3–102.

Structure sensitivity

A reaction in which not all surface sites have the same activity. The surface-normalized activity changes with nanoparticle size for structure-sensitive reactions.

Turnover number

In enzymology, the maximum number of chemical conversions of substrate molecule that a single catalytic site will execute for a given concentration. In organometallic catalysis, the number of moles of substrate that a mole of catalyst can convert before being deactivated.

Taylor ratio

The fraction of the catalyst surface that is catalytically active.

In situ spectroscopy

In situ spectroscopy entails spectroscopic investigation at one or more catalytic conditions (T, p, reactants).

Operando spectroscopy

Operando spectroscopy studies the reaction while it takes place and is accompanied by the quantification of the reaction products, thereby allowing the direct correlation between structure and performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, C., Weckhuysen, B.M. The concept of active site in heterogeneous catalysis. Nat Rev Chem 6, 89–111 (2022). https://doi.org/10.1038/s41570-021-00340-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00340-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing