1932

Abstract

The interactions of textiles with moisture have been thoroughly studied in textile research, while fluid mechanists and soft matter physicists have partially investigated the underlying physics phenomena. A description of liquid morphologies in fibrous assemblies allows one to characterize the associated capillary forces and their impact on textiles, and to organize their complex moisture transport dynamics. This review gathers some of the common features and fundamental mechanisms at play in textile–liquid interactions, with selected examples ranging from knitted fabrics to nonwoven paper sheets, associated with experiments on model systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-034728
2022-01-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-034728.html?itemId=/content/journals/10.1146/annurev-fluid-030121-034728&mimeType=html&fmt=ahah

Literature Cited

  1. Achour NS, Hamdaoui M, Nasrallah SB, Perwuelz A. 2015. Investigation of moisture management properties of cotton and blended knitted fabrics. Int. J. Mater. Metall. Eng. 9:7891–95
    [Google Scholar]
  2. Agrawal P, Barnet L, Attinger D. 2017. Bloodstains on woven fabric: simulations and experiments for quantifying the uncertainty on the impact and directional angles. Forensic Sci. Int. 278:240–52
    [Google Scholar]
  3. Alava M, Niskanen K. 2006. The physics of paper. Rep. Prog. Phys. 69:3669–723
    [Google Scholar]
  4. Aristoff JM, Duprat C, Stone HA. 2011. Elastocapillary imbibition. Int. J. Non-Linear Mech. 46:4648–56
    [Google Scholar]
  5. Balankin AS, Morales D, Susarrey O, Samayoa D, Trinidad JM et al. 2006. Self-similar roughening of drying wet paper. Phys. Rev. E 73:6065105
    [Google Scholar]
  6. Bedarkar A, Wu XF. 2009. Capillary torque in a liquid bridge between two angled filaments. J. Appl. Phys. 106:11113527
    [Google Scholar]
  7. Bedarkar A, Wu XF, Vaynberg A. 2010. Wetting of liquid droplets on two parallel filaments. Appl. Surf. Sci. 256:237260–64
    [Google Scholar]
  8. Belle J, Odermatt J 2016. Initial wet web strength of paper. Cellulose 23:42249–72
    [Google Scholar]
  9. Bico J, Quéré D. 2003. Precursors of impregnation. Europhys. Lett. 61:3348–53
    [Google Scholar]
  10. Bico J, Reyssat E, Roman B 2018. Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50:629–59
    [Google Scholar]
  11. Bintein PB. 2015. Dynamiques de gouttes funambules: applications à la fabrication de laine de verre. PhD Thesis Sorbonne Université Paris:
    [Google Scholar]
  12. Bosco E, Peerlings R, Lomans B, van der Sman C, Geers M. 2018. On the role of moisture in triggering out-of-plane displacement in paper: from the network level to the macroscopic scale. Int. J. Solids Struct. 154:66–77
    [Google Scholar]
  13. Burgeni AA, Kapur C. 1967. Capillary sorption equilibria in fiber masses. Text. Res. J. 37:356–66
    [Google Scholar]
  14. Chang S, Kim W 2020. Dynamics of water imbibition through paper with swelling. J. Fluid Mech. 892:A39
    [Google Scholar]
  15. Chang S, Seo J, Hong S, Lee DG, Kim W 2018. Dynamics of liquid imbibition through paper with intra-fiber pores. J. Fluid Mech. 845:36–50
    [Google Scholar]
  16. Cichosz S, Masek A. 2019. Cellulose structure and property changes indicated via wetting-drying cycles. Polym. Degrad. Stab. 167:33–43
    [Google Scholar]
  17. Das A, Ishtiaque S, Singh S, Meena H. 2009. Tensile characteristics of yarns in wet condition. Indian J. Fibre Text. Res. 34:4338–44
    [Google Scholar]
  18. de Azevedo EN, Alme LR, Engelsberg M, Fossum JO, Dommersnes P. 2008. Fluid imbibition in paper fibers: precursor front. Phys. Rev. E 78:6066317
    [Google Scholar]
  19. de Castro TC, Carr DJ, Taylor MC, Kieser JA, Duncan W. 2016. Drip bloodstain appearance on inclined apparel fabrics: effect of prior-laundering, fibre content and fabric structure. Forensic Sci. Int. 266:488–501
    [Google Scholar]
  20. DGA (Dir. Gén. Armement) 2020. Lettre n 4 à l'attention des industriels sollicitant DGA Maîtrise NRBC pour les masques Tech. Guid., DGA Maîtrise NRBC Vert-le-Petit, Fr.: Apr. 3
  21. Duprat C, Aristoff JM, Stone HA. 2011. Dynamics of elastocapillary rise. J. Fluid Mech. 679:641–54
    [Google Scholar]
  22. Duprat C, Bick AD, Warren PB, Stone HA. 2013. Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. Langmuir 29:257857–63
    [Google Scholar]
  23. Duprat C, Noûs C, Protière S. 2020. Controlling wet adhesion with elasticity. Soft Matter 16:286463–67
    [Google Scholar]
  24. Duprat C, Protière S. 2015. Capillary stretching of fibers. Europhys. Lett. 111:556006
    [Google Scholar]
  25. Duprat C, Protière S, Beebe AY, Stone HA. 2012. Wetting of flexible fibre arrays. Nature 482:7386510–13
    [Google Scholar]
  26. Durville D, Ganghoffer JF, Lomov S, Orgéas L, Kyriakides S 2018. Multiscale modelling of fibrous and textile materials. Int. J. Solids Struct. 154:1–17
    [Google Scholar]
  27. Dyba RV, Miller B. 1969. Evaluation of wettability from capillary rise between filaments. Text. Res. J. 39:10962–70
    [Google Scholar]
  28. Faessel M, Delisée C, Bos F, Castéra P. 2005. 3D modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis. Compos. Sci. Technol. 65:131931–40
    [Google Scholar]
  29. Gager V, Le Duigou A, Bourmaud A, Pierre F, Behlouli K, Baley C 2019. Understanding the effect of moisture variation on the hygromechanical properties of porosity-controlled nonwoven biocomposites. Polym. Test. 78:105944
    [Google Scholar]
  30. Gottlieb IM, Wakeham H, Virgin HM. 1958. Compressional and absorptive behavior of bulk fibre systems. Text. Res. J. 28:41–46
    [Google Scholar]
  31. Ha J, Kim HY 2020. Capillarity in soft porous solids. Annu. Rev. Fluid Mech. 52:263–84
    [Google Scholar]
  32. Hearne E, Nossar M. 1983. Behavior of loose fibrous beds during centrifuging: part III: location, shape, and size of droplets of surface moisture. Text. Res. J. 53:236–52
    [Google Scholar]
  33. Hsieh YL, Bangling Y, Hartzell MM. 1992. Liquid wetting, transport, and retention properties of fibrous assemblies. Text. Res. J. 62:697–704
    [Google Scholar]
  34. Hubbe MA. 2014. Puzzling aspects of the hydrophobic sizing of paper and its inter-fiber bonding ability. BioResources 9:45782–83
    [Google Scholar]
  35. Hubbe MA, Venditti RA, Rojas OJ. 2007. What happens to cellulosic fibres during papermaking and recycling? A review. BioResources 2:739–88
    [Google Scholar]
  36. Kamo J, Hirai T, Kamada K. 1992. Solvent-induced morphological change of microporous hollow fiber membranes. J. Membr. Sci. 70:2–3217–24
    [Google Scholar]
  37. Kandhavadivu P, Rathinamoorthy R, Surjit R 2015. Moisture and thermal management properties of woven and knitted tri-layer fabrics. Indian J. Fibre Text. Res. 40:243–49
    [Google Scholar]
  38. Kappel L, Hirn U, Gilli E, Austria W, Schennach R 2010. Revisiting polarized light microscopy for fiber-fiber bond area measurement—part I: theoretical fundamentals. Nordic Pulp Paper Res. J. 25:165–70
    [Google Scholar]
  39. Kim HS, Michielsen S, DenHartog E 2020. New wicking measurement system to mimic human sweating phenomena with continuous microfluidic flow. J. Mater. Sci. 55:187816–32
    [Google Scholar]
  40. Kissa E. 1996. Wetting and wicking. Text. Res. J. 66:10660–68
    [Google Scholar]
  41. Labbé R, Duprat C. 2019. Capturing aerosol droplets with fibers. Soft Matter 15:356946–51
    [Google Scholar]
  42. Liu T, Choi K-F, Li Y. 2008. Wicking in twisted yarns. J. Colloid Interface Sci. 318:1134–39
    [Google Scholar]
  43. Lukáš D, Chaloupek J, Košt'áková E, Pan N, Martinková I. 2006. Morphological transitions of capillary rise in a bundle of two and three solid parallel cylinders. Physica A 371:2226–48
    [Google Scholar]
  44. Lv Y, Yu X, Tu ST, Yan J, Dahlquist E 2010. Wetting of polypropylene hollow fiber membrane contactors. J. Membr. Sci. 362:1–2444–52
    [Google Scholar]
  45. Maloney TC, Li T, Weise U, Paulapuro H 1997. Intra-and inter-fibre pore closure in wet pressing. Appita J. 50:4301–6
    [Google Scholar]
  46. Masoodi R, Pillai KM. 2010. Darcy's law-based model for wicking in paper-like swelling porous media. AIChE J. 56:92257–67
    [Google Scholar]
  47. Mead-Hunter R, King AJ, Mullins BJ. 2014. Aerosol-mist coalescing filters—a review. Sep. Purif. Technol. 133:484–506
    [Google Scholar]
  48. Melki S, Biguenet F, Dupuis D. 2019. Hydrophobic properties of textile materials: robustness of hydrophobicity. J. Text. Inst. 110:81221–28
    [Google Scholar]
  49. Mikučionienė D, Laureckienė G. 2009. The influence of drying conditions on dimensional stability of cotton weft knitted fabrics. Mater. Sci. 15:164–68
    [Google Scholar]
  50. Miller B, Coe AB, Ramachandran P. 1967. Liquid rise between filaments in a V-configuration. Text. Res. J. 37:11919–24
    [Google Scholar]
  51. Minor FW, Schwartz AM, Wulkow E, Buckles LC. 1959a. The migration of liquids in textile assemblies: part II: the wicking of liquids in yarns. Text. Res. J. 29:12931–39
    [Google Scholar]
  52. Minor FW, Schwartz AM, Wulkow E, Buckles LC. ; 1959b. The migration of liquids in textile assemblies: part III: the behavior of liquids on single textile fibers. Text. Res. J. 29:12940–49
    [Google Scholar]
  53. Morton WE, Hearle JWS 2008. Physical Properties of Textile Fibres Boca Raton, FL: CRC. , 4th ed..
  54. Mullins BJ, Agranovski IE, Braddock RD, Ho CM. 2004. Effect of fiber orientation on fiber wetting processes. J. Colloid Interface Sci. 269:2449–58
    [Google Scholar]
  55. Ostlund S 2018. Three-dimensional deformation and damage mechanisms in forming of advanced structures in paper. Advances in Pulp and Paper Research: Transactions of the 16th Fundamental Research Symposium Held in Oxford W Batchelor, D Söderberg 489–594 Lancashire, UK: Pulp Paper Fundam. Res. Soc.
  56. Parada MYI, Schlepütz CM, Rossi RM, Derome D, Carmeliet J. 2019a. Two-stage wicking of yarns at the fiber scale investigated by synchrotron X-ray phase-contrast fast tomography. Text. Res. J. 89:4967–79
    [Google Scholar]
  57. Parada MYI, Vontobel P, Rossi RM, Derome D, Carmeliet J. 2017. Dynamic wicking process in textiles. Transp. Porous Media 119:3611–32
    [Google Scholar]
  58. Parada MYI, Zhou X, Derome D, Rossi RM, Carmeliet J. 2019b. Modeling wicking in textiles using the dual porosity approach. Text. Res. J. 89:3519–28
    [Google Scholar]
  59. Park S, Venditti R, Jameel H, Pawlak J 2006. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr. Polym. 66:197–103
    [Google Scholar]
  60. Patnaik A, Rengasamy RS, Kothari VK, Ghosh A. 2006. Wetting and wicking in fibrous materials. Text. Prog. 38:11–105
    [Google Scholar]
  61. Peng Y, Gardner DJ, Han Y. 2012. Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102
    [Google Scholar]
  62. Persson BNJ, Ganser C, Schmied F, Teichert C, Schennach R et al. 2013. Adhesion of cellulose fibers in paper. J. Phys. Condens. Matter 25:4045002
    [Google Scholar]
  63. Perwuelz A, Casetta M, Caze C. 2001. Liquid organisation during capillary rise in yarns—influence of yarn torsion. Polym. Test. 20:5553–61
    [Google Scholar]
  64. Perwuelz A, Mondon P, Caze C. 2000. Experimental study of capillary flow in yarns. Text. Res. J. 70:4333–39
    [Google Scholar]
  65. Pezron I, Bourgain G, Quéré D. 1995. Imbibition in a fabric. J. Colloid Interface Sci. 173:319–27
    [Google Scholar]
  66. Preston JM, Nimkar MV. 1952. Capillary phenomena in assemblies of fibres. J. Text. Inst. Trans. 43:8T402–22
    [Google Scholar]
  67. Preston JM, Nimkar MV, Gundavda SP. 1951. Capillary and imbibed water in assemblies of moist fibres. J. Text. Inst. Trans. 42:2T79–90
    [Google Scholar]
  68. Princen HM. 1969a. Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30:69–75
    [Google Scholar]
  69. Princen HM. 1969b. Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30:359–71
    [Google Scholar]
  70. Princen HM. 1970a. Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 34:171–84
    [Google Scholar]
  71. Princen HM. 1970b. Contact angles from capillary rise between filaments in a V-configuration. Text. Res. J. 40:1069–72
    [Google Scholar]
  72. Protière S, Duprat C, Stone HA. 2013. Wetting on two parallel fibers: drop to column transitions. Soft Matter 9:1271–76
    [Google Scholar]
  73. Pucci MF, Liotier PJ, Drapier S. 2016. Capillary wicking in flax fabrics—effects of swelling in water. Colloids Surf. A 498:176–84
    [Google Scholar]
  74. Py C, Bastien R, Bico J, Roman B, Boudaoud A 2007. 3D aggregation of wet fibers. Europhys. Lett. 77:444005
    [Google Scholar]
  75. Reyssat M, Courbin L, Reyssat E, Stone HA 2008. Imbibition in geometries with axial variations. J. Fluid Mech. 615:335–44
    [Google Scholar]
  76. Roberts RJ, Senden TJ, Knackstedt MA, Lyne MB. 2003. Spreading of aqueous liquids in unsized papers is by film flow. J. Pulp Paper Sci. 29:4123–31
    [Google Scholar]
  77. Salehi Rad A, Hosseini Varkiyani S, Haghighat Kish M. 2013. Water retention in hollow fibres nonwoven mat. J. Text. Inst. 104:9994–1002
    [Google Scholar]
  78. Sauret A, Bick AD, Duprat C, Stone HA. 2014. Wetting of crossed fibers: multiple steady states and symmetry breaking. Europhys. Lett. 105:556006
    [Google Scholar]
  79. Sauret A, Boulogne F, Soh B, Dressaire E, Stone HA 2015. Wetting morphologies on randomly oriented fibers. Eur. Phys. J. E 38:662
    [Google Scholar]
  80. Sauret A, Boulogne F, Somszor K, Dressaire E, Stone HA 2017. Drop morphologies on flexible fibers: influence of elastocapillary effects. Soft Matter 13:1134–40
    [Google Scholar]
  81. Saville BP. 1999. Physical Testing of Textiles Cambridge, UK: Woodhead:
  82. Schmied FJ, Teichert C, Kappel L, Hirn U, Bauer W, Schennach R. 2013. What holds paper together: nanometre scale exploration of bonding between paper fibres. Sci. Rep. 3:12432
    [Google Scholar]
  83. Schuchard DR, Berg JC. 1991. Liquid transport in composite cellulose—superabsorbent fiber networks. Wood Fiber Sci. 23:3342–57
    [Google Scholar]
  84. Sharabaty T, Biguenet F, Dupuis D, Viallier P. 2008. Investigation on moisture transport through polyester/cotton fabrics. Indian J. Fibre Text. Res. 33:419–25
    [Google Scholar]
  85. Skelton J. 1975. Interfiber forces during wetting and drying. Science 190:420915–20
    [Google Scholar]
  86. Soleimani M, Hill RJ, van de Ven TGM. 2015. Capillary force between flexible filaments. Langmuir 31:308328–34
    [Google Scholar]
  87. Steiger FH, Kapur C. 1972. The absorption of liquids by compressed fiber systems. Text. Res. J. 42:8443–49
    [Google Scholar]
  88. Sun Y, Kharaghani A, Metzger T, Müller J, Tsotsas E. 2015. Lotion distribution in wet wipes investigated by pore network simulation and X-ray micro tomography. Transp. Porous Media 107:2449–68
    [Google Scholar]
  89. Takahashi A, Häggkvist M, Li TQ. 1997. Capillary penetration in fibrous matrices studied by dynamic spiral magnetic resonance imaging. Phys. Rev. E 56:22035–42
    [Google Scholar]
  90. Tejado A, Chen WC, Alam MN, van de Ven TGM. 2014. Superhydrophobic foam-like cellulose made of hydrophobized cellulose fibres. Cellulose 21:1735–43
    [Google Scholar]
  91. Tejado A, van de Ven TGM. 2010. Why does paper get stronger as it dries?. Mater. Today 13:942–49
    [Google Scholar]
  92. Testoni GA, Kim S, Pisupati A, Park CH 2018. Modeling of the capillary wicking of flax fibers by considering the effects of fiber swelling and liquid absorption. J. Colloid Interface Sci. 525:166–76
    [Google Scholar]
  93. Van de Velde P, Protière S, Duprat C 2021. Dynamics of drop absorption by a swelling fiber. Soft Matter 17:6168–75
    [Google Scholar]
  94. van de Ven TGM. 2008. Capillary forces in wet paper. Ind. Eng. Chem. Res. 47:197250–56
    [Google Scholar]
  95. Virozub A, Haimovich N, Brandon S. 2009. Three-dimensional simulations of liquid bridges between two cylinders: forces, energies, and torques. Langmuir 25:2212837–42
    [Google Scholar]
  96. Wang P, Zhou J, Xu B, Lu C, Meng QA, Liu H. 2020. Bioinspired anti-Plateau–Rayleigh-instability on dual parallel fibers. Adv. Mater. 32:452003453
    [Google Scholar]
  97. Zhang K, Fang K, Bukhari MN, Xie R, Song Y et al. 2020. The effect of ink drop spreading and coalescing on the image quality of printed cotton fabric. Cellulose 27:169725–36
    [Google Scholar]
  98. Zhu L, Perwuelz A, Lewandowski M, Campagne C. 2008. Static and dynamic aspects of liquid capillary flow in thermally bonded polyester nonwoven fabrics. J. Adhes. Sci. Technol. 22:7745–60
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-034728
Loading
/content/journals/10.1146/annurev-fluid-030121-034728
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error