1932

Abstract

Taking a small step away from Newtonian fluid behavior creates an explosion in the range of possibilities. Non-Newtonian fluid properties can achieve diverse flow objectives, but the complexity introduces challenges. We survey useful rheological complexity along with organizing principles and design methods as we consider the following questions: How can non-Newtonian properties be useful? What properties are needed? How can we get those properties?

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031821-104935
2022-01-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-031821-104935.html?itemId=/content/journals/10.1146/annurev-fluid-031821-104935&mimeType=html&fmt=ahah

Literature Cited

  1. Abed WM, Whalley RD, Dennis DJC, Poole RJ 2016. Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel. J. Non-Newton. Fluid Mech. 231:68–78
    [Google Scholar]
  2. Alves MA, Oliveira PJ, Pinho FT. 2021. Numerical methods for viscoelastic fluid flows. Annu. Rev. Fluid Mech. 53:509–41
    [Google Scholar]
  3. Ash M, Ash I 2006. Handbook of Rheology Modifiers Endicott, NY: Synapse Inf. Resour.
  4. Ashby MF. 2011. Materials Selection in Mechanical Design Amsterdam: Elsevier. , 4th ed..
  5. Astarita G, Marrucci G. 1974. Principles of Non-Newtonian Fluid Mechanics London: McGraw-Hill
  6. Baird DG, Collias DI. 2014. Polymer Processing: Principles and Design New York: Wiley
  7. Barroso VC, Andrade RJ, Maia JM. 2010. An experimental study on the criteria for failure of polymer melts in uniaxial extension: the test case of a polyisobutylene melt in different deformation regimes. J. Rheol. 54:3605–18
    [Google Scholar]
  8. Beavers GS, Joseph DD. 1975. The rotating rod viscometer. J. Fluid Mech. 69:3475–511
    [Google Scholar]
  9. Beiersdorfer P, Layne D, Magee EW, Katz JI. 2011. Viscoelastic suppression of gravity-driven counterflow instability. Phys. Rev. Lett. 106:058301
    [Google Scholar]
  10. Bergeron V, Bonn D, Martin JY, Vovelle L 2000. Controlling droplet deposition with polymer additives. Nature 405:6788772–75
    [Google Scholar]
  11. Beris AN, Tsamopoulos JA, Armstrong RC, Brown RA 1985. Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158:219–44
    [Google Scholar]
  12. Berry GC, Fox TG 1968. The viscosity of polymers and their concentrated solutions. Fortschritte der Hochpolymeren-Forschung H-J Cantow, G Dall'Asta, JD Ferry, W Kern, G Natta et al.261–357 New York: Springer
    [Google Scholar]
  13. Bird RB. 1976. Useful non-Newtonian models. Annu. Rev. Fluid Mech. 8:13–34
    [Google Scholar]
  14. Bird RB, Armstrong RC, Hassager O 1987. Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics New York: Wiley. , 2nd ed..
    [Google Scholar]
  15. Bird RB, Wiest JM. 1995. Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27:169–93
    [Google Scholar]
  16. Blackwell BC, Deetjen ME, Gaudio JE, Ewoldt RH. 2015. Sticking and splashing in yield-stress fluid drop impacts on coated surfaces. Phys. Fluids 27:043101
    [Google Scholar]
  17. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H 2016. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 5:3326–33
    [Google Scholar]
  18. Bonn D, Denn MM, Berthier L, Divoux T, Manneville S 2017. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89:035005
    [Google Scholar]
  19. Braun DB, Rosen MR. 2000. Rheology Modifiers Handbook: Practical Use and Application East Norwich, NY: William Andrew
  20. Bröckel U, Meier W, Wagner G 2013. Product Design and Engineering: Formulation of Gels and Pastes Weinheim, Ger: Wiley
  21. Burger ED, Munk WR, Wahl HA. 1982. Flow increase in the Trans Alaska Pipeline through use of a polymeric drag-reducing additive. J. Pet. Technol. 34:2377–86
    [Google Scholar]
  22. Carlson JD, Matthis W, Toscano JR 2001. Smart prosthetics based on magnetorheological fluids. Proc. SPIE 4332:308–16
    [Google Scholar]
  23. Cates ME, Candau SJ. 1990. Statics and dynamics of worm-like surfactant micelles. J. Phys. Condens. Matter 2:336869–92
    [Google Scholar]
  24. Chang EP. 1991. Viscoelastic windows of pressure-sensitive adhesives. J. Adhes. 34:1–4189–200
    [Google Scholar]
  25. Chaudhary G, Bharadwaj NA, Braun PV, Ewoldt RH. 2020. Exploiting nonlinear elasticity for anomalous magnetoresponsive stiffening. ACS Macro Lett 9:111632–37
    [Google Scholar]
  26. Choueiri GH, Lopez JM, Hof B. 2018. Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120:124501
    [Google Scholar]
  27. Christensen SF, McKinley GH. 1998. Rheological modelling of the peeling of pressure-sensitive adhesives and other elastomers. Int. J. Adhes. Adhes. 18:5333–43
    [Google Scholar]
  28. Clarke A, Howe AM, Mitchell J, Staniland J, Hawkes L, Leeper K. 2015. Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions. Soft Matter 11:183536–41
    [Google Scholar]
  29. Clasen C, Phillips PM, Palangetic L, Vermant, J. 2012. Dispensing of rheologically complex fluids: the map of misery. AIChE J 58:103242–55
    [Google Scholar]
  30. Colombo J, Del Gado E. 2014. Stress localization, stiffening, and yielding in a model colloidal gel. J. Rheol. 58:51089–116
    [Google Scholar]
  31. Considère PM. 1885. Mémoire sur l'emploi du fer et de l'acier dans les constructions. Annales des ponts et chaussées, Vol. 9: Mémoires et documents relatifs à l'art des constructions et au service de l'ingénieur574–775 Paris: Dunod
    [Google Scholar]
  32. Corman RE. 2015. Enabling design with rheological complexity: intuition and optimization of viscoelastic materials MS Thesis, Univ. Ill. Urbana-Champaign:
  33. Corman RE. 2019. Design tools for linear viscoelastic fluids PhD Thesis, Univ. Ill. Urbana-Champaign:
  34. Corman RE, Ewoldt RH. 2019. Mapping linear viscoelasticity for design and tactile intuition. Appl. Rheol. 29:1141–61
    [Google Scholar]
  35. Corman RE, Rao L, Bharadwaj NA, Allison JT, Ewoldt RH 2016. Setting material function design targets for linear viscoelastic materials and structures. J. Mech. Des. Trans. ASME 138:051402
    [Google Scholar]
  36. Creton C, Ciccotti M. 2016. Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79:046601
    [Google Scholar]
  37. Cussler EL, Moggridge GD. 2011. Chemical Product Design Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  38. D'Avino G, Greco F, Maffettone PL 2017. Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech. 49:341–60
    [Google Scholar]
  39. D'Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL 2012. Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:91638–45
    [Google Scholar]
  40. Dahlquist CA 1969. Pressure-sensitive adhesives. Treatise on Adhesion and Adhesives, Vol. 2 RL Patrick 219–60 New York: Marcel Dekker
    [Google Scholar]
  41. Dahlquist CA, Kolpe V. 1974. Pressure-sensitive adhesives comprising a block copolymer and a tackifier US Patent 3,787,531A
  42. de Gennes P-G. 1971. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55:2572–79
    [Google Scholar]
  43. de Gennes P-G. 1996. Soft adhesives.. Langmuir 12:194497–500
    [Google Scholar]
  44. Dealy JM. 2010. Weissenberg and Deborah numbers—their definition and use. Rheol. Bull. 79:214–18
    [Google Scholar]
  45. Del Giudice F, D'Avino G, Greco F, Maffettone PL, Shen AQ 2018. Fluid viscoelasticity drives self-assembly of particle trains in a straight microfluidic channel. Phys. Rev. Appl. 10:064058
    [Google Scholar]
  46. Deplace F, Carelli C, Mariot S, Retsos H, Chateauminois A et al. 2009. Fine tuning the adhesive properties of a soft nanostructured adhesive with rheological measurements. J. Adhes. 85:118–54
    [Google Scholar]
  47. Derkach SR. 2009. Rheology of emulsions. Adv. Colloid Interface Sci. 151:1/21–23
    [Google Scholar]
  48. Dobraszczyk BJ, Morgenstern MP. 2003. Rheology and the breadmaking process. J. Cereal Sci. 38:3229–45
    [Google Scholar]
  49. Dobrynin AV, Carrillo J-MY. 2011. Universality in nonlinear elasticity of biological and polymeric networks and gels. Macromolecules 44:1140–46
    [Google Scholar]
  50. Espinosa-Garcia J, Lauga E, Zenit R 2013. Fluid elasticity increases the locomotion of flexible swimmers. Phys. Fluids 25:031701
    [Google Scholar]
  51. Ewert TR, Mannion AM, Coughlin ML, Macosko CW, Bates FS. 2018. Influence of rheology on renewable pressure-sensitive adhesives from a triblock copolymer. J. Rheol. 62:1161–70
    [Google Scholar]
  52. Ewoldt RH. 2014. Extremely soft: design with rheologically complex fluids. Soft Robot 1:112–20
    [Google Scholar]
  53. Ewoldt RH, Clasen C, Hosoi AE, McKinley GH. 2007. Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 3:5634–43
    [Google Scholar]
  54. Ewoldt RH, McKinley GH. 2017. Mapping thixo-elasto-visco-plastic behavior. Rheol. Acta 56:3195–210
    [Google Scholar]
  55. Fielding SM. 2011. Criterion for extensional necking instability in polymeric fluids. Phys. Rev. Lett. 107:258301
    [Google Scholar]
  56. Frazier S, Jiang X, Burton JC. 2020. How to make a giant bubble. Phys. Rev. Fluids 5:013304
    [Google Scholar]
  57. Freund JB, Kim J, Ewoldt RH 2018. Field sensitivity of flow predictions to rheological parameters. J. Non-Newton. Fluid Mech. 257:71–82
    [Google Scholar]
  58. Fulford GR, Katz DF, Powell RL. 1998. Swimming of spermatozoa in a linear viscoelastic fluid. Biorheology 35:4/5295–309
    [Google Scholar]
  59. Gauzzelli E, Morris J 2012. A Physical Introduction to Suspension Dynamics Cambridge, UK: Cambridge Univ. Press
  60. Graham MD. 2014. Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 26:10625–56
    [Google Scholar]
  61. Graham MD. 2018. Microhydrodynamics, Brownian Motion, and Complex Fluids Cambridge, UK: Cambridge Univ. Press
  62. Groisman A, Quake SR. 2004. A microfluidic rectifier: anisotropic flow resistance at low Reynolds numbers. Phys. Rev. Lett. 92:93–6
    [Google Scholar]
  63. Hagquist JAE, Hume RM III, Lund TL, Lund RI. 2009. Composition inhibiting the expansion of fire, suppressing existing fire, and methods of manufacture and use thereof US Patent 7,163,642B2
  64. Ho BP, Leal LG. 1976. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76:4783–99
    [Google Scholar]
  65. Holt SE, Perez MP. 2015. Impact resistant, torsion-reducing protective athletic gear using shear thickening fluid US Patent 9,193,890B2
  66. Hoyle DM, Fielding SM. 2016. Criteria for extensional necking instability in complex fluids and soft solids. Part I: Imposed Hencky strain rate protocol. J. Rheol. 60:61347–75
    [Google Scholar]
  67. James DF. 2009. Boger fluids. Annu. Rev. Fluid Mech. 41:129–42
    [Google Scholar]
  68. Jensen KE, Szabo P, Okkels F. 2012a. Topology optimization of viscoelastic rectifiers. Appl. Phys. Lett. 100:234102
    [Google Scholar]
  69. Jensen KE, Szabo P, Okkels F, Alves MA. 2012b. Experimental characterization of a novel viscoelastic rectifier design. Biomicrofluidics 6:044112
    [Google Scholar]
  70. Joseph DD. 1990. Fluid Dynamics of Viscoelastic Liquids Berlin: Springer
  71. Joshi YM, Denn MM 2004. Failure and recovery of entangled polymer melts in elongational flow. Rheology Reviews 2004 K Walters, D Bindings 1–18 Aberystwyth, UK: Br. Soc. Rheol.
    [Google Scholar]
  72. Jossic L, Magnin A. 2001. Drag and stability of objects in a yield stress fluid. AIChE J 47:122666–72
    [Google Scholar]
  73. Kim B, Lee SS, Yoo TH, Kim S, Kim SY et al. 2019. Normal stress difference-driven particle focusing in nanoparticle colloidal dispersion. Sci. Adv. 5:6eaav4819
    [Google Scholar]
  74. King GE. 2012. Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells Paper presented at SPE Hydraulic Fracturing Technology Conference, The Woodlands, Tex., Febr. 6–8 https://doi.org/10.2118/152596-MS
    [Crossref]
  75. Kojic N, Bico J, Clasen C, McKinley GH 2006. Ex vivo rheology of spider silk. J. Exp. Biol. 209:214355–62
    [Google Scholar]
  76. Larson RG. 1999. The Structure and Rheology of Complex Fluids New York: Oxford Univ. Press
  77. Larson RG, Desai PS. 2015. Modeling the rheology of polymer melts and solutions. Annu. Rev. Fluid Mech. 47:47–65
    [Google Scholar]
  78. Larson RG, Wei Y. 2019. A review of thixotropy and its rheological modeling. J. Rheol. 63:3477–501
    [Google Scholar]
  79. Lauga E. 2014. Locomotion in complex fluids: integral theorems. Phys. Fluids 26:081902
    [Google Scholar]
  80. Lauga E. 2016. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48:105–30
    [Google Scholar]
  81. Lee WK, Vaseleski RC, Metzner AB. 1974. Turbulent drag reduction in polymeric solutions containing suspended fibers. AIChE J 20:1128–33
    [Google Scholar]
  82. Lee YH, Schuh JK, Ewoldt RH, Allison JT. 2019. Simultaneous design of non-Newtonian lubricant and surface texture using surrogate-based multiobjective optimization. Struct. Multidiscip. Optim. 60:99–116
    [Google Scholar]
  83. Leshansky AM, Bransky A, Korin N, Dinnar U. 2007. Tunable nonlinear viscoelastic “focusing” in a microfluidic device. Phys. Rev. Lett. 98:234501
    [Google Scholar]
  84. Li J, Mooney DJ 2016. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1:16071
    [Google Scholar]
  85. Lin Y-J, Horner J, Illie B, Lynch ML, Furst EM, Wagner NJ. 2020. Molecular engineering of thixotropic, sprayable fluids with yield stress using associating polysaccharides. J. Colloid Interface Sci. 580:264–74
    [Google Scholar]
  86. Lopez Hernandez H, Souza JW, Appel EA 2020. A quantitative description for designing the extrudability of shear-thinning physical hydrogels. Macromol. Biosci. 21:22000295
    [Google Scholar]
  87. Lumley JL. 1969. Drag reduction by additives. Annu. Rev. Fluid Mech. 1:367–84
    [Google Scholar]
  88. M'barki A, Bocquet L, Stevenson A 2017. Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci. Rep. 7:6017
    [Google Scholar]
  89. Macosko CW. 1994. Rheology Principles, Measurements, and Applications New York: Wiley
  90. Martinetti L, Carey-De La Torre O, Schweizer KS, Ewoldt RH. 2018. Inferring the nonlinear mechanisms of a reversible network. Macromolecules 51:218772–89
    [Google Scholar]
  91. Martinetti L, Mannion AM, Voje WE Jr., Xie R, Ewoldt RH et al. 2014. A critical gel fluid with high extensibility: the rheology of chewing gum. J. Rheol. 58:4821–38
    [Google Scholar]
  92. McKinley GH, Hassager O. 1999. The Considère condition and rapid stretching of linear and branched polymer melts. J. Rheol. 43:51195–212
    [Google Scholar]
  93. McKinley GH, Sridhar T. 2002. Filament-stretching rheometry of complex fluids. Annu. Rev. Fluid Mech. 34:375–415
    [Google Scholar]
  94. Mewis J, Wagner NJ. 2009. Thixotropy. Adv. Colloid Interface Sci. 147:214–27
    [Google Scholar]
  95. Mewis J, Wagner NJ. 2012. Colloidal Suspension Rheology Cambridge, UK: Cambridge Univ. Press
  96. Moore F. 1959. The rheology of ceramic slips and bodies. Trans. Br. Ceram. Soc. 58:470–94
    [Google Scholar]
  97. Morris JF. 2020. Shear thickening of concentrated suspensions: recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 52:121–44
    [Google Scholar]
  98. Mouritsen O, Styrbæk K. 2017. Mouthfeel: How Texture Makes Taste New York: Columbia Univ. Press
  99. Münstedt H. 2018. Extensional rheology and processing of polymeric materials. Int. Polym. Process. 33:5594–618
    [Google Scholar]
  100. Nelson AZ. 2018. Rheology and design of yield-stress fluids PhD Thesis, Univ. Ill. Urbana-Champaign:
  101. Nelson AZ, Bras RE, Liu J, Ewoldt RH. 2018. Extending yield-stress fluid paradigms. J. Rheol. 62:1357–69
    [Google Scholar]
  102. Nelson AZ, Ewoldt RH. 2017. Design of yield-stress fluids: a rheology-to-structure inverse problem. Soft Matter 13:417578–94
    [Google Scholar]
  103. Nelson AZ, Kundukad B, Wong WK, Khan SA, Doyle PS. 2020. Embedded droplet printing in yield-stress fluids. PNAS 117:115671–79
    [Google Scholar]
  104. Nelson AZ, Schweizer KS, Rauzan BM, Nuzzo RG, Vermant J, Ewoldt RH. 2019. Designing and transforming yield-stress fluids. Curr. Opin. Solid State Mater. Sci. 23:5100758
    [Google Scholar]
  105. Nessil A, Larbi S, Belhaneche H, Malki M. 2013. Journal bearings lubrication aspect analysis using non-Newtonian fluids. Adv. Tribol. 2013:212568
    [Google Scholar]
  106. Niu R, Ramaswamy M, Ness C, Shetty A, Cohen I. 2020. Tunable solidification of cornstarch under impact: how to make someone walking on cornstarch sink. Sci. Adv. 6:19eaay6661
    [Google Scholar]
  107. Nyström M, Qazi WM, Bülow M, Ekberg O, Stading M 2015. Effects of rheological factors on perceived ease of swallowing. Appl. Rheol. 25:69–17
    [Google Scholar]
  108. O'Bryan CS, Bhattacharjee T, Hart S, Kabb CP, Schulze KD et al. 2017. Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3:5e1602800
    [Google Scholar]
  109. Olsen BD, Kornfield JA, Tirrell DA. 2010. Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43:219094–99
    [Google Scholar]
  110. Owens MS, Vinjamur M, Scriven LE, Macosko CW. 2011. Misting of non-Newtonian liquids in forward roll coating. J. Non-Newton. Fluid Mech. 166:19/201123–28
    [Google Scholar]
  111. Paschkewitz JS, Dubief Y, Shaqfeh ESG. 2005. The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics. Phys. Fluids 17:063102
    [Google Scholar]
  112. Pek YS, Wan CAA, Shekaran A, Zhuo L, Ying JY 2008. A thixotropic nanocomposite gel for three-dimensional cell culture. Nat. Nanotechnol. 3:671–75
    [Google Scholar]
  113. Pipkin AC. 1972. Lectures on Viscoelasticity Theory New York: Springer
  114. Poole RJ. 2012. The Deborah and Weissenberg numbers. Rheol. Bull. 53:232–39
    [Google Scholar]
  115. Poole RJ, Budhiraja B, Cain AR, Scott PA. 2012. Emulsification using elastic turbulence. J. Non-Newton. Fluid Mech. 177:15–18
    [Google Scholar]
  116. Puente-Velázquez JA, Godínez FA, Lauga E, Zenit R. 2019. Viscoelastic propulsion of a rotating dumbbell. Microfluid. Nanofluid. 23:9108
    [Google Scholar]
  117. Rauzan BM, Nelson AZ, Lehman SE, Ewoldt RH, Nuzzo RG. 2018. Particle-free emulsions for 3D printing elastomers. Adv. Funct. Mater. 28:211707032
    [Google Scholar]
  118. Read DJ, Auhl D, Das C, Den Doelder J, Kapnistos M et al. 2011. Linking models of polymerization and dynamics to predict branched polymer structure and flow. Science 333:60511871–74
    [Google Scholar]
  119. Rodd LE, Cooper-White JJ, Boger DV, McKinley GH. 2007. Role of the elasticity number in the entry flow of dilute polymer solutions in microfabricated contraction geometries. J. Nonnewton. Fluid Mech. 143:2/3170–91
    [Google Scholar]
  120. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH. 2005. The inertio-elastic planar entry flow of low-viscosity elastic fluids in microfabricated geometries. J. Non-Newton. Fluid Mech. 129:11–22
    [Google Scholar]
  121. Roy A, Morozov A, van Saarloos W, Larson RG. 2006. Mechanism of polymer drag reduction using a low-dimensional model. Phys. Rev. Lett. 97:234501
    [Google Scholar]
  122. Rubinstein M, Colby RH. 2003. Polymer Physics Oxford, UK: Oxford Univ. Press
  123. Ruehs P, Bergfreund J, Bertsch P, Gstöhl S, Fischer P 2021. Complex fluids in animal survival strategies. Soft Matter 17:3022–36
    [Google Scholar]
  124. Schuh JK, Ewoldt RH. 2019. Low Reynolds number friction reduction with polymers and textures. J. Non-Newton. Fluid Mech. 273:104167
    [Google Scholar]
  125. Sen S, Morales AG, Ewoldt RH. 2020. Viscoplastic drop impact on thin films. J. Fluid Mech. 891:A27
    [Google Scholar]
  126. Sharma SC, Yadav SK. 2014. Performance analysis of a fully textured hybrid circular thrust pad bearing system operating with non-Newtonian lubricant. Tribol. Int. 77:50–64
    [Google Scholar]
  127. Sherman ZM, Howard MP, Lindquist BA, Jadrich RB, Truskett TM. 2020. Inverse methods for design of soft materials. J. Chem. Phys. 152:140902
    [Google Scholar]
  128. Sousa PC, Pinho FT, Oliveira MSN, Alves MA. 2012. High performance microfluidic rectifiers for viscoelastic fluid flow. RSC Adv 2:3920–29
    [Google Scholar]
  129. Spicer PT, Caggioni M, Squires TM 2020. Complex fluid formulations: a source of inspiration and innovation. Chem. Eng. Prog. 116:732–38
    [Google Scholar]
  130. Steinberg V. 2021. Elastic turbulence: an experimental view on inertialess random flow. Annu. Rev. Fluid Mech. 53:27–58
    [Google Scholar]
  131. Stokes JR, Boehm MW, Baier SK. 2013. Oral processing, texture and mouthfeel: from rheology to tribology and beyond. Curr. Opin. Colloid Interface Sci. 18:4349–59
    [Google Scholar]
  132. Tabor M, de Gennes PG. 1986. A cascade theory of drag reduction. Europhys. Lett. 2:7519–22
    [Google Scholar]
  133. Tadmor Z, Bird RB. 1974. Rheological analysis of stabilizing forces in wire-coating dies. Polym. Eng. Sci. 14:2124–36
    [Google Scholar]
  134. Tanner RI. 1970. A theory of die-swell. J. Polym. Sci. A 8:122067–78
    [Google Scholar]
  135. Tanner RI. 2005. A theory of die-swell revisited. J. Non-Newton. Fluid Mech. 129:285–87
    [Google Scholar]
  136. Tirtaatmadja V, McKinley GH, Cooper-White JJ. 2006. Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys. Fluids 18:043101
    [Google Scholar]
  137. Tripathi A, Whittingstall P, McKinley GH. 2000. Using filament stretching rheometry to predict strand formation and “processability” in adhesives and other non-Newtonian fluids. Rheol. Acta 39:4321–37
    [Google Scholar]
  138. Truby RL, Lewis JA. 2016. Printing soft matter in three dimensions. Nature 540:7633371–78
    [Google Scholar]
  139. Tschoegl NW. 1989. The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction Berlin: Springer
  140. Ulrich KT, Eppinger SD, Yang MC 2020. Product Design and Development New York: McGraw-Hill. , 7th ed..
  141. US Forest Serv 2020. Water enhancers for wildland fire management Spec. Sheet, US Forest Serv. Washington, DC: https://www.fs.fed.us/rm/fire/wfcs/documents/2020-0305_qpl_WE..pdf
  142. van Vliet T. 2008. Strain hardening as an indicator of bread-making performance: a review with discussion. J. Cereal Sci. 48:11–9
    [Google Scholar]
  143. Vasudevan M, Buse E, Lu D, Krishna H, Kalyanaraman R et al. 2010. Irreversible nanogel formation in surfactant solutions by microporous flow. Nat. Mater. 9:5436–41
    [Google Scholar]
  144. Verbaan CAM, Peters GWM, Steinbuch M. 2017. The advantage of linear viscoelastic material behavior in passive damper design—with application in broad-banded resonance dampers for industrial high-precision motion stages. J. Sound Vib. 386:242–50
    [Google Scholar]
  145. Verdier C, Piau J. 2003. Effect of nonlinear viscoelastic properties on tack. J. Polym. Sci. B 41:233139–49
    [Google Scholar]
  146. Virk PS. 1975. Drag reduction fundamentals. AIChE J 21:4625–56
    [Google Scholar]
  147. Virk PS, Mickley HS, Smith KA. 1970. The ultimate asymptote and mean flow structure in Toms’ phenomenon. J. Appl. Mech. 37:2488–93
    [Google Scholar]
  148. Wagner NJ, Wetzel ED. 2010. Advanced body armor US Patent 7,825,045B1
  149. Wei M-H, Li B, David RLA, Jones SC, Sarohia V et al. 2015. Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers. Science 350:625672–75
    [Google Scholar]
  150. Wei TS, Fan FY, Helal A, Smith KC, McKinley GH et al. 2015. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow. Adv. Energy Mater. 5:151500535
    [Google Scholar]
  151. White CM, Mungal MG. 2008. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40:235–56
    [Google Scholar]
  152. Wijshoff H. 2010. The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491:4/577–177
    [Google Scholar]
  153. Wingstrand SL, Hassager O, Parisi D, Borger AL, Mortensen K. 2018. Flow induced crystallization prevents melt fracture of HDPE in uniaxial extensional flow. J. Rheol. 62:41051–60
    [Google Scholar]
  154. Witek DM, Dombrowski R, Wagner JN. 2020. Movement-reactive athletic apparel and methods of making the same US Patent Appl 345,082A1
  155. Xi L, Graham MD. 2012. Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 108:028301
    [Google Scholar]
  156. Yan C, Mackay ME, Czymmek K, Nagarkar RP, Schneider JP, Pochan DJ. 2012. Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. Langmuir 28:146076–87
    [Google Scholar]
  157. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM 2011. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:2266–73
    [Google Scholar]
  158. Yu AC, Hernandez HL, Kim AH, Stapleton LM, Brand RJ et al. 2019. Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids. PNAS 116:4220820–27
    [Google Scholar]
  159. Zeitels SM, Hillman RE, Karajana-GI SS, Langer RS 2011. Methods and systems of matching voice deficits with a tunable mucosal implant to restore and enhance individualized human sound and voice production World Patent 109,730A2
  160. Zhu X, Wang S-Q. 2013. Mechanisms for different failure modes in startup uniaxial extension: tensile (rupture-like) failure and necking. J. Rheol. 57:1223–48
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-031821-104935
Loading
/content/journals/10.1146/annurev-fluid-031821-104935
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error