1932

Abstract

The pervasiveness of unmanned air vehicles (UAVs), from insect to airplane scales, combined with active flow control maturity, has set the scene for vehicles that differ markedly from present-day configurations. Nano and micro air vehicles, with characteristic Reynolds numbers typically less than 105, rely on periodically generated leading-edge vortices for lift generation, propulsion, and maneuvering. This is most commonly achieved by mechanical flapping or pulsed plasma actuation. On larger UAVs, with Reynolds numbers greater than 105, externally driven and autonomous fluidic systems continue to dominate. These include traditional circulation control techniques, autonomous synthetic jets, and discrete sweeping jets. Plasma actuators have also shown increased technological maturity. Energy efficiency is a major challenge, whether it be batteries and power electronics on nano and micro air vehicles or acceptably low compressor bleed on larger UAVs. Further challenges involve the development of aerodynamic models based on experiments or numerical simulations, as well as flight dynamics models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-032221-105053
2022-01-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-032221-105053.html?itemId=/content/journals/10.1146/annurev-fluid-032221-105053&mimeType=html&fmt=ahah

Literature Cited

  1. Abdulrahim M, Garcia H, Lind R 2005. Flight characteristics of shaping the membrane wing of a micro air vehicle. J. Aircr. 42:131–37
    [Google Scholar]
  2. Alvarez Calderon A. 1964. Rotating cylinder flaps for V/S.T.O.L aircraft: some aspects of an investigation into the rotating cylinder flap high lift system for V/S.T.O.L. aircraft conducted jointly by the Peruvian Air Force and the National University of Engineering of Peru. Aircr. Eng. Aerosp. Technol. 36:304–9
    [Google Scholar]
  3. Amitay M, Washburn AE, Anders SG, Parekh DE 2004. Active flow control on the Stingray uninhabited air vehicle: transient behavior. AIAA J. 42:2205–14
    [Google Scholar]
  4. Bachar T. 2001. Generating dynamically controllable oscillatory fluid flow US Patent 6,186,412
  5. Bachmann M, Utehs S, Vey S, Paschereit CO, Greenblatt D. 2009. Plasma-based active flow control on low Reynolds number airfoils Paper presented at 49th Israel Annual Conference on Aerospace Sciences Tel Aviv, Haifa: Mar. 4–5
  6. Bénard N, Jolibois J, Moreau E 2009. Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator. J. Electrost. 67:133–39
    [Google Scholar]
  7. Benton SI, Visbal MR. 2018. High-frequency forcing to mitigate unsteady separation from a bursting separation bubble. Phys. Rev. Fluids 3:013907-1-22
    [Google Scholar]
  8. Berman GJ, Wang ZJ. 2007. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582:153–68
    [Google Scholar]
  9. Bernal LP, Roshko A. 1986. Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170:499–525
    [Google Scholar]
  10. Bontemps A, Vanneste T, Paquet JB, Dietsch T, Grondel S, Cattan E 2013. Design and performance of an insect-inspired nano air vehicle. Smart Mater. Struct. 22:014008
    [Google Scholar]
  11. Carmichael BH. 1981. Low Reynolds number airfoil survey. Volume I NASA Contract. Rep. 165803 Low Energy Transp. Syst. Capistrano Beach, CA:
    [Google Scholar]
  12. Cattafesta LN, Sheplak M. 2011. Actuators for active flow control. Annu. Rev. Fluid Mech. 43:247–72Provides a framework for discussing flow control actuator specifications, characteristics, selection, design, and classification.
    [Google Scholar]
  13. Chua A. 2021. Kelley Aerospace unveils supersonic combat drone concept. FlightGlobal Feb. 25. https://www.flightglobal.com/aerospace/kelley-aerospace-unveils-supersonic-combat-drone-concept/142635.article
    [Google Scholar]
  14. Clawson TS, Ferrari S, Helbling EF, Wood RJ, Fu B et al. 2020. Full flight envelope and trim map of flapping-wing micro aerial vehicles. J. Guid. Control Dyn. 43:2218–36
    [Google Scholar]
  15. Corke TC, Post ML, Orlov DM. 2007. SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog. Aerosp. Sci. 43:193–217Describes in detail the physics, design, and applications of single dielectric barrier discharge plasma actuators.
    [Google Scholar]
  16. Crittenden TM, Woo GTK, Glezer A. 2018. Combustion-powered actuation for transitory flow control. AIAA J 56:3414–35
    [Google Scholar]
  17. Dang TQ, Bushnell PR. 2009. Aerodynamics of cross-flow fans and their application to aircraft propulsion and flow control. Prog. Aerosp. Sci. 45:1–29
    [Google Scholar]
  18. Davies PE. 2014. F-104 Starfighter Units in Combat Oxford, UK: Osprey Publ.
  19. de Croon GCHE, Perçin M, Remes BDW, Ruijsink R, De Wagter C. 2016. The DelFly: Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot Dordrecht, Neth: Springer
  20. Delorme Y, Stanly R, Frankel SH, Greenblatt D 2021. Application of actuator line model for large eddy simulation of rotor noise control. Aerosp. Sci. Technol. 108:106405
    [Google Scholar]
  21. Dickinson MH, Lehmann F-O, Sane SP. 1999. Wing rotation and aerodynamic basis of insect flight. Science 284:1954–60
    [Google Scholar]
  22. Dixon LS, Hall C. 2014. Fluid Mechanics and Thermodynamics of Turbomachinery Amsterdam: Elsevier. , 7th ed..
  23. Dunaevich L, Greenblatt D. 2020. Stability and transition on a Coandă cylinder. Phys. Fluids 32:084106
    [Google Scholar]
  24. Eldredge JD, Jones AR. 2019. Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51:75–104Describes importance of three-dimensionality associated with leading-edge vortex stabilization.
    [Google Scholar]
  25. Ellington CP. 1999. The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Exp. Biol. 202:3439–48
    [Google Scholar]
  26. Ellington CP, van den Berg C, Willmott AP, Thomas ALR 1996. Leading-edge vortices in insect flight. Nature 384:626–30
    [Google Scholar]
  27. Fregene K. 2012. Unmanned aerial vehicles and control: Lockheed Martin Advanced Technology Laboratories. IEEE Control Syst. Mag. 32:32–34
    [Google Scholar]
  28. Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L 2003. Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J 41:240–47
    [Google Scholar]
  29. Ghee TA, Raghu S, Morgan AN 2018. Sweeping jet active flow control on a representative high performance military wing Paper presented at AIAA Aerospace Sciences Meeting Kissimmee, FL: AIAA Pap2018–1800
  30. Glezer A, Amitay M. 2002. Synthetic jets. Annu. Rev. Fluid Mech. 34:503–29
    [Google Scholar]
  31. Göksel B, Greenblatt D, Rechenberg I, Nayeri CN, Paschereit CO. 2006. Steady and unsteady plasma wall jets for separation and circulation control Paper presented at AIAA Flow Control Conference , , 3rd., San Francisco: AIAA Pap2006–3686
  32. Goldschmied FR. 1987. Fuselage self-propulsion by static pressure thrust: wind tunnel verification Paper presented at Aircraft Design, Systems and Operation Meeting St. Louis, MO: AIAA Pap87–2935
  33. Greenblatt D, Göksel B, Rechenberg I, Schüle C, Romann D, Paschereit CO 2008a. Dielectric barrier discharge flow control at very low flight Reynolds numbers. AIAA J 46:1528–41
    [Google Scholar]
  34. Greenblatt D, Kastantin Y, Nayeri CN, Paschereit CO. 2008b. Delta-wing flow control using dielectric barrier discharge actuators. AIAA J 46:1554–60
    [Google Scholar]
  35. Greenblatt D, Schneider T, Schüle CY. 2012. Mechanism of flow separation control using plasma actuation Phys. Fluids 24:1–26Describes the generation of time-averaged “bubbles” produced by a train of leading-edge vortices.
  36. Greenblatt D, Washburn AE. 2008. Influence of finite span and sweep on active flow control efficacy. AIAA J 46:1675–94
    [Google Scholar]
  37. Greenblatt D, Whalen EA, Wygnanski I. 2019. Introduction to the Flow Control Virtual Collection. AIAA J 57:3111–14
    [Google Scholar]
  38. Greenblatt D, Wygnanski I. 2000. The control of separation by periodic excitation. Prog. Aerosp. Sci. 36:487–545
    [Google Scholar]
  39. Griffin SM, Velden CS. 2019. Hazard avoidance products for convectively-induced turbulence in support of high-altitude Global Hawk aircraft missions. Pure Appl. Geophys. 176:2045–55
    [Google Scholar]
  40. Gross A, Fasel HF. 2006. Coanda wall jet calculations using one- and two-equation turbulence models. AIAA J 44:2095–107
    [Google Scholar]
  41. Grossman KR, Cybyk BZ, Rigling MC, Van Wie DM. 2004. Characterization of Sparkjet actuators for flow control Paper presented at AIAA Aerospace Sciences Meeting and Exhibit, 42nd Reno, NV: AIAA Pap2004–0089
  42. Grundmann S, Frey M, Tropea C. 2009. Unmanned aerial vehicle (UAV) with plasma actuators for separation control Paper presented at AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition , , 47th., Orlando, FL: AIAA Pap2009–698
  43. Hegde NT, George VI, Naya CG, Kuma K. 2019. Design, dynamic modelling and control of tilt-rotor UAVs: a review. Int. J. Intell. Unmanned Syst. 8:143–61
    [Google Scholar]
  44. Hirsch D, Gharib M 2018. Schlieren visualization and analysis of sweeping jet actuator dynamics. AIAA J 56:2947–60
    [Google Scholar]
  45. Hutchin C. 2019. NATO AVT-239 Task Group: control effectiveness and system sizing requirements for integration of fluidic flight controls on the SACCON aircraft configuration Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap2019–0280
  46. Isfahani A, Webb NJ, Samimy M. 2017. Stall cell formation over a Boeing Vertol VR-7 airfoil Paper presented at AIAA Aerospace Sciences Meeting , , 55th., Grapevine, TX: AIAA Pap2017–1577
  47. Jafferis NT, Helbling EF, Karpelson M, Wood RJ 2019. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570:491–95Demonstrates sustained untethered flight of an insect-sized, 90-mg, flapping-wing, microscale aerial vehicle.
    [Google Scholar]
  48. Jardin T. 2017. Coriolis effect and the attachment of the leading edge vortex. J. Fluid Mech. 820:312–40
    [Google Scholar]
  49. Jentzsch MP, Taubert L, Wygnanski IJ. 2019. Using sweeping jets to trim and control a tailless aircraft model. AIAA J 57:2322–34Describes stabilization of tailless λ-wing air vehicles using high-speed sweeping jets at the flap hinge.
    [Google Scholar]
  50. Jones GS, Englar J. 2003. Advances in pneumatic-controlled high-lift systems through pulsed blowing Paper presented at AIAA Applied Aerodynamics Conference, 21st Orlando, FL: AIAA Pap2003–3411
  51. Jones GS, Viken SA, Washburn AE, Jenkins LN, Cagle CM. 2002. An active flow circulation controlled flap concept for general aviation aircraft applications Paper presented at Flow Control Conference, 1st St. Louis, MO: AIAA Pap2002–3157
  52. Joslin RD, Jones GS 2006. Applications of Circulation Control Technology, Vol. 214 Progress in Aeronautics and Astronautics Reston, VA: Am. Inst. Aeronaut. Astronaut. Provides an extensive overview of circulation control research, developments, and applications; accompanied by a large database.
  53. Keennon M, Klingebiel K, Won H, Andriukov A. 2012. Development of the nano hummingbird: a tailless flapping wing micro air vehicle. Paper presented at AIAA Aerospace Sciences Meeting, 50th Nashville, TN: 9–12 Jan. AIAA Pap2012–0588
  54. Keisar D, Hasin D, Greenblatt D. 2019. Plasma actuator application on a full-scale aircraft tail. AIAA J 57:616–27Describes DBD plasma actuation to ameliorate leading-edge panel stall during crosswind takeoff and landing.
    [Google Scholar]
  55. Kelley CL, Bowles PO, Cooney J, He C, Corke TC et al. 2014. Leading-edge separation control using alternating-current and nanosecond-pulse plasma actuators. AIAA J 52:1871–84
    [Google Scholar]
  56. Kerstens W, Williams D, Pfeiffer J, King R, Colonius T 2011. Closed-loop control of lift for longitudinal gust suppression at low Reynolds numbers. AIAA J 49:1721–28
    [Google Scholar]
  57. Kitsios V, Cordier L, Bonnet J-P, Ooi A, Soria J. 2011. On the coherent structures and stability properties of a leading edge separated airfoil with turbulent recirculation. J. Fluid Mech. 683:395–416
    [Google Scholar]
  58. Kriegseis J, Simon B, Grundmann S 2016. Towards in-flight applications? A review on dielectric barrier discharge-based boundary-layer control. Appl. Mech. Rev. 68:020802-1-41
    [Google Scholar]
  59. Lachmann GV. 1961. Boundary Layer and Flow Control: Its Principles and Application Vols 1 & 2 New York: Pergamon Press
    [Google Scholar]
  60. Lakshminarayana B. 1996. Fluid Dynamics and Heat Transfer of Turbomachinery New York: Wiley
  61. Li D, Zhao S, Da Ronch A, Xiang J, Drofelnik J et al. 2018. A review of modelling and analysis of morphing wings. Prog. Aerosp. Sci. 100:46–62
    [Google Scholar]
  62. Lin JC, Melton LP, Hannon JA, Andino MY, Koklu M et al. 2020. Testing of high-lift common research model with integrated active flow control. J. Aircr. 57:1121–33
    [Google Scholar]
  63. Lin JC, Whalen EA, Andino MY, Graff EC, Lacy DS et al. 2019. Full-scale testing of active flow control applied to a vertical tail. J. Aircr. 56:1376–85
    [Google Scholar]
  64. Little J, Takashima K, Nishihara M, Adamovich I, Samimy M 2012. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators. AIAA J 50:350–65
    [Google Scholar]
  65. Liu LG, Du G, Sun M 2020. Aerodynamic-force production mechanisms in hovering mosquitoes. J. Fluid Mech. 898:A19
    [Google Scholar]
  66. Lok M, Helbling EF, Zhang X, Wood R, Brooks D, Wei D-Y 2018. A low mass power electronics unit to drive piezoelectric actuators for flying microrobots. IEEE Trans. Power Electron. 33:3180–91
    [Google Scholar]
  67. Mabey DG. 1972. Analysis and correlation of data on pressure fluctuations in separated flow. J. Aircr. 9:642–45
    [Google Scholar]
  68. Mankins JC. 2009. Technology readiness assessments: a retrospective. Acta Astronaut 65:1216–23
    [Google Scholar]
  69. Mao S, Gang D 2003. Lift and power requirements of hovering insect flight. Acta Mech. Sin. 19:458–69
    [Google Scholar]
  70. Matalanis CG, Bowles PO, Min BY, Jee S, Kuczek AE et al. 2017. High-speed experiments on combustion-powered actuation for dynamic stall suppression. AIAA J 55:3001–15
    [Google Scholar]
  71. Matamoros I, de Visser CC. 2018. Incremental nonlinear control allocation for a tailless aircraft with innovative control effectors. Paper presented at 2018 AIAA Guidance, Navigation, and Control Conference Kissimmee, FL: AIAA Pap2018–1116
    [Google Scholar]
  72. McVeigh A, Nagib H, Wood T, Wygnanski I 2011. Full-scale flight tests of active flow control to reduce tiltrotor aircraft download. J. Aircr. 48:786–96Describes the application of synthetic jets to full-scale rotorcraft download alleviation.
    [Google Scholar]
  73. Miller DN, Maines BH, Niestroy MA, Williams DR, Warsop C, Smith DR 2019. NATO AVT-239 Task Group: results to assess prospects of active flow control on a next-gen tailless aircraft Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap.2019–0281
  74. Mladenov A. 2014. Mikoyan-Gurevich MiG-21 Oxford, UK: Osprey Publ.
  75. Moreau E. 2007. Airflow control by non-thermal plasma actuators. J. Phys. D 40:605–36
    [Google Scholar]
  76. Mosimann L, Ducard G. 2014. Limitations in total system weight for solar aircraft designed for infinite flight Paper presented at IEEE International Conference on Control Applications Antibes, France: Oct. 8–10
  77. Mueller TJ. 1999. Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles Paper presented at RTO AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications VKI Belgium: Sep. 13–17
  78. Müller-Vahl H, Nayeri CN, Paschereit CO, Greenblatt D. 2016. Dynamic stall control via adaptive blowing. Renew. Energy 97:47–64
    [Google Scholar]
  79. Nangia R, Ghoreyshi M, van Rooij MPC, Cummings RM. 2019. Aerodynamic design assessment and comparisons of the MULDICON UCAV concept. Aerosp. Sci. Technol. 93:105321
    [Google Scholar]
  80. Narayanaswamy V, Raja LR, Clemens NT. 2012. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA J 50:246–49
    [Google Scholar]
  81. Neuendorf R, Lourenco L, Wygnanski I. 2004. On large streamwise structures in a wall jet flowing over a circular cylinder. Phys. Fluids 16:2158–69Describes the existence of meandering Görtler vortices in centrifugally instable Coandă flows.
    [Google Scholar]
  82. Neuendorf R, Wygnanski I. 1999. On a turbulent wall jet flowing over a circular cylinder. J. Fluid Mech. 381:1–25
    [Google Scholar]
  83. Niestroy MA, Williams DR, Seidel J 2019. NATO AVT-239 Task Group: active flow control simulation of the tailless ICE aircraft Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap2019–0279
  84. Ohanian OJ, Karni ED, Londernberg WK, Gelhausen PA, Inman DJ. 2011. Ducted-fan force and moment control via steady and synthetic jets. J. Aircr. 48:514–25
    [Google Scholar]
  85. Panagiotou P, Kaparos P, Salpingidou C, Yakinthos K. 2016. Aerodynamic design of a MALE UAV. Aerosp. Sci. Technol. 50:127–38
    [Google Scholar]
  86. Patel MP, Ng T, Vasudevan S, Corke TC, He C. 2007. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. J. Aircr. 4:1264–73
    [Google Scholar]
  87. Petricca L, Ohlckers P, Grinde C. 2011. Micro- and nano-air vehicles: state of the art. Int. J. Aerosp. Eng. 2011:214549
    [Google Scholar]
  88. Piccoli M, Yim M. 2017. Piccolissimo: the smallest micro aerial vehicle Paper presented at IEEE International Conference on Robotics and Automation (ICRA) Singapore: May 29–Jun 3
  89. Pines DJ, Bohorquez F. 2006. Challenges facing future micro-air-vehicle development. J. Aircr. 43:290–304
    [Google Scholar]
  90. Poelma C, Dickson WB, Dickinson MH. 2006. Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41:213–25
    [Google Scholar]
  91. Raghu S. 2013. Fluidic oscillators for flow control. Exp. Fluids 54:455
    [Google Scholar]
  92. Reißner F. 2015. Hysteresis modeling and comparison of controller effectiveness on a pitching airfoil MS Thesis Technische Univ. Berlin:
  93. Rodríguez D, Theofilis V. 2011. On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn. 25:105–17
    [Google Scholar]
  94. Roupassov DV, Nikipelov AA, Nudnova MM, Starikovskii AY. 2009. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J 47:169–85
    [Google Scholar]
  95. Samimy M, Webb N, Crawley M 2018. Excitation of free shear-layer instabilities for high-speed flow control. AIAA J 56:1770–91
    [Google Scholar]
  96. Saric WS. 1994. Görtler vortices. Annu. Rev. Fluid Mech. 26:379–409
    [Google Scholar]
  97. Schaeffler NW, Allan BG, Wong OD, Tanner PE. 2014. Experimental investigation of active aerodynamic load reduction on a rotorcraft fuselage with rotor effects Paper presented at AIAA Applied Aerodynamics Conference, 32nd Atlanta: AIAA Pap2014–2561
  98. Seele R, Tewes P, Woszidlo R, McVeigh MA, Lucas NJ, Wygnanski IJ 2009. Discrete sweeping jets as tools for improving the performance of the V-22. J. Aircr. 46:2098–106
    [Google Scholar]
  99. Sehra AK, Whitlow WJ. 2004. Propulsion and power for 21st century aviation. Prog. Aerosp. Sci. 40:199–235
    [Google Scholar]
  100. Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I. 1993. Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 31:2052–60
    [Google Scholar]
  101. Seifert A, David S, Fono I, Stalnov O, Dayan I. 2010. Roll control via active flow control: from concept to flight. J. Aircr. 47:864–74
    [Google Scholar]
  102. Seifert A, Eliahu S, Greenblatt D, Wygnanski I 1998. Use of piezoelectric actuators for airfoil separation control. AIAA J 36:1535–37
    [Google Scholar]
  103. Seifert A, Greenblatt D, Wygnanski I. 2004. An aerial vehicle controlled and propelled by oscillatory momentum generators and method of flying a vehicle US Patent 6,751,530
  104. Seifert A, Pack LG. 1999. Oscillatory control of separation at high Reynolds numbers. AIAA J 37:1062–71
    [Google Scholar]
  105. Seifert J. 2012. A review of the Magnus effect in aeronautics. Prog. Aerosp. Sci. 55:17–45
    [Google Scholar]
  106. Seyfang GR. 2012. FanWing – developments and applications Paper presented at 28th International Congress of the Aeronautical Sciences Brisbane, Aust.: Sep. 23–28
  107. Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK et al. 2010. Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46:284–327
    [Google Scholar]
  108. Shyy W, Berg M, Ljungqvist D. 1999. Flapping and flexible wings for biological and micro air vehicles. Prog. Aerosp. Sci. 35:455–505
    [Google Scholar]
  109. Smith DR, Miller DN, Niestroy MA, Seidel J, Warsop C, Williams DR 2020. The AVT-239-RTG multidisciplinary performance assessment of innovative control effectors for next generation military air vehicles: summary and outlook Tech. Rep. STO-MP-AVT-324 NATO STO Brussels:
  110. Stalnov O. 2017. Closed-loop active flow control for UAVs. Advanced UAV Aerodynamics Flight Stability and Control: Novel Concepts Theory and Applications P Marqués, A Da Ronch 449–64 Hoboken, NJ: Wiley
    [Google Scholar]
  111. Steinbuch M, Shepshelovich M. 2005. Development of UAV wings – transonic designs Paper presented at AIAA Aerospace Sciences Meeting and Exhibit, 43rd Reno, NV: AIAA Pap2005–42
  112. Sun M, Tang J. 2002. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205:55–70
    [Google Scholar]
  113. Suzuki K, Komuro A, Sato S, Sakurai M, Mitsuhashi K et al. 2021. Development of small high-voltage AC power supply for a dielectric barrier discharge plasma actuator. Rev. Sci. Instrum. 92:024707
    [Google Scholar]
  114. Taha HE, Hajj MR, Beran PS. 2014. State-space representation of the unsteady aerodynamics of flapping flight. Aerosp. Sci. Technol. 34:1–11
    [Google Scholar]
  115. Thomas FO, Corke TC, Iqbal M, Kozlov A, Schatzman D 2009. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J 47:2169–78
    [Google Scholar]
  116. Wang ZJ, Birch JM, Dickinson MH. 2004. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations versus robotic wing experiments. J. Exp. Biol. 207:449–60
    [Google Scholar]
  117. Ward TA, Rezadad M, Fearday CJ, Viyapuri R. 2015. A review of biomimetic air vehicle research: 1984–2014. Int. J. Micro Air Veh. 7:375–94
    [Google Scholar]
  118. Warsop C, Crowther WJ. 2018. Fluidic flow control effectors for flight control. AIAA J. 56:3808–23Describes the development of a series of vehicles and flight tests based on circulation control.
    [Google Scholar]
  119. Warsop C, Crowther WJ, Shearwood T. 2019a. NATO AVT-239: flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap2019–0282
  120. Warsop C, Smith DR, Miller DN. 2019b. NATO AVT-239: innovative control effectors for manoeuvring of air vehicles – conclusions and next steps Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap2019–0284
  121. Weihs D, Katz J. 1983. Cellular patterns in poststall flow over unswept wings. AIAA J 12:1757–59
    [Google Scholar]
  122. Whalen EA, Shmilovich A, Spoor M, Tran J, Vijgen P et al. 2018. Flight test of an active flow control enhanced vertical tail. AIAA J 56:3393–98
    [Google Scholar]
  123. Whitehead J, Gursul I. 2006. Interaction of synthetic jet propulsion with airfoil aerodynamics at low Reynolds numbers. AIAA J 44:1753–66
    [Google Scholar]
  124. Williams DR, Greenblatt D, Müller-Vahl H, Santra S, Reißner F. 2018. Feed-forward dynamic stall control model. AIAA J 52:608–15
    [Google Scholar]
  125. Williams DR, King R. 2018. Alleviating unsteady aerodynamic loads with closed-loop flow control. AIAA J. 56:2194–207
    [Google Scholar]
  126. Williams DR, Seidel J, Osteroos R, McLaughlin TE 2019. NATO AVT-239 Task Group: flight control derivatives using active flow control effectors on the ICE/SACCON UAS model Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap2019–0043
  127. Wojcik CJ, Buchholz JHJ. 2014. Vorticity transport in the leading-edge vortex on a rotating blade. J. Fluid Mech. 743:249–61
    [Google Scholar]
  128. Woszidlo R, Ostermann F, Schmidt H-J. 2019. Fundamental properties of fluidic oscillators for flow control applications. AIAA J 57:978–92
    [Google Scholar]
  129. Xu H, He Y, Strobel KL, Gilmore CK, Kelley SP et al. 2018. Flight of an aeroplane with solid-state propulsion. Nature 563:532–35
    [Google Scholar]
  130. Yavrucuk I, Murat BH, Uzol O. 2013. Mathematical modeling of the NOTAR antitorque system for flight simulation. J. Am. Helicopter Soc. 58:1–9
    [Google Scholar]
  131. Yon SA, Katz J 1997. Study of the unsteady flow features on a stalled wing. AIAA J 36:305–12
    [Google Scholar]
  132. Zhang X, Xian B, Zhao B, Zhang Y. 2015. Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision. IEEE Trans. Ind. Electron. 62:6392–403
    [Google Scholar]
  133. Zhou Y, Xia Z, Luo Z, Wang L, Deng X et al. 2019. Characterization of three-electrode SparkJet actuator for hypersonic flow control. AIAA J 57:879–85
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-032221-105053
Loading
/content/journals/10.1146/annurev-fluid-032221-105053
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error