1932

Abstract

Abstract

Dynamic variables of drop impact such as force, drag, pressure, and stress distributions are key to understanding a wide range of natural and industrial processes. While the study of drop impact kinematics has been in constant progress for decades thanks to high-speed photography and computational fluid dynamics, research on drop impact dynamics has only peaked in the last 10 years. Here, we review how recent coordinated efforts of experiments, simulations, and theories have led to new insights on drop impact dynamics. Particularly, we consider the temporal evolution of the impact force in the early- and late-impact regimes, as well as spatiotemporal features of the pressure and shear-stress distributions on solid surfaces. We also discuss other factors, including the presence of water layers, air cushioning, and nonspherical drop geometry, and briefly review granular impact cratering by liquid drops as an example demonstrating the distinct consequences of the stress distributions of drop impact.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030321-103941
2022-01-05
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030321-103941.html?itemId=/content/journals/10.1146/annurev-fluid-030321-103941&mimeType=html&fmt=ahah

Literature Cited

  1. Adler WF. 1977. Liquid drop collisions on deformable media. J. Mater. Sci. 12:1253–71
    [Google Scholar]
  2. Bako AN, Darboux F, James F, Josserand C, Lucas C 2016. Pressure and shear stress caused by raindrop impact at the soil surface: scaling laws depending on the water depth. Earth Surf. Process. Landf. 41:1199–210
    [Google Scholar]
  3. Barenblatt GI. 1996. Scaling, Self-similarity, and Intermediate Asymptotics Cambridge, UK: Cambridge Univ. Press
  4. Batchelor GK. 1967. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  5. Bennett T, Poulikakos D. 1993. Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. J. Mater. Sci. 28:963–70
    [Google Scholar]
  6. Bird JC, Dhiman R, Kwon HM, Varanasi KK. 2013. Reducing the contact time of a bouncing drop. Nature 503:385–88
    [Google Scholar]
  7. Bourouiba L. 2021. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53:473–508
    [Google Scholar]
  8. Chen H, Zhang X, Garcia BD, Georgoulas A, Deflorin M et al. 2019. Drop impact onto a cantilever beam: behavior of the lamella and force measurement. Interfacial Phenom. Heat Transf. 7:85–96
    [Google Scholar]
  9. Clanet C, Beguin C, Richard D, Quéré D 2004. Maximal deformation of an impacting drop. J. Fluid Mech. 517:199–208
    [Google Scholar]
  10. Clift R, Grace JR, Weber ME 1978. Bubbles, Drops, and Particles New York: Dover
  11. de Jong R, Zhao S-C, Garcia-Gonzalez D, Verduijn G, van der Meer D. 2021. Impact cratering in sand: comparing solid and liquid intruders. Soft Matter 17:120–25
    [Google Scholar]
  12. de Jong R, Zhao S-C, van der Meer D. 2017. Crater formation during raindrop impact on sand. Phys. Rev. E 95:042901
    [Google Scholar]
  13. Delon G, Terwagne D, Dorbolo S, Vandewalle N, Caps H. 2011. Impact of liquid droplets on granular media. Phys. Rev. E 84:046320
    [Google Scholar]
  14. Dickerson AK, Shankles PG, Madhavan NM, Hu DL. 2012. Mosquitoes survive raindrop collisions by virtue of their low mass. PNAS 109:9822–27
    [Google Scholar]
  15. Driscoll MM, Nagel SR. 2011. Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107:154502
    [Google Scholar]
  16. Eggers J. 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69:865–929
    [Google Scholar]
  17. Eggers J, Fontelos MA. 2015. Singularities: Formation, Structure, and Propagation Cambridge, UK: Cambridge Univ. Press.
  18. Eggers J, Fontelos MA, Josserand C, Zaleski S 2010. Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22:062101
    [Google Scholar]
  19. Ellison WD. 1945. Some effects of raindrops and surface-flow on soil erosion and infiltration. Eos 26:415–29
    [Google Scholar]
  20. Fedorchenko AI, Wang AB, Wang YH 2005. Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface. Phys. Fluids 17:093104
    [Google Scholar]
  21. Field JE, Camus JJ, Tinguely M, Obreschkow D, Farhat M 2012. Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 290:154–60
    [Google Scholar]
  22. Furbish DJ, Hamner KK, Schmeeckle M, Borosund MN, Mudd SM. 2007. Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets. J. Geophys. Res. 112:F01001
    [Google Scholar]
  23. Gao M, Liu X, Vanin LP, Sun T-P, Cheng X, Gordillo L 2017. Dynamics and scaling of explosion cratering in granular media. AIChE J. 64:2972–81
    [Google Scholar]
  24. Gart S, Mates JE, Megaridis CM, Jung S. 2015. Droplet impacting a cantilever: a leaf-raindrop system. Phys. Rev. Appl. 3:044019
    [Google Scholar]
  25. Ghadiri H, Payne D. 1977. Raindrop impact stress ad the breakdown of soil crumbs. J. Soil Sci. 28:247–58
    [Google Scholar]
  26. Gordillo JM, Riboux G, Quintero ES 2019. A theory on the spreading of impacting droplets. J. Fluid Mech. 866:298–315
    [Google Scholar]
  27. Gordillo L, Sun TP, Cheng X. 2018. Dynamics of drop impact on solid surfaces: evolution of impact force and self-similar spreading. J. Fluid Mech. 840:190–214
    [Google Scholar]
  28. Grinspan AS, Gnanamoorthy R. 2010. Impact force of low velocity liquid droplets measured using piezoelectric PVDF film. Colloids Surfaces A 356:162–68
    [Google Scholar]
  29. Hackworth JV. 1979. A mechanistic investigation of the rain erosion of infrared transmitting materials at velocities to Mach 2. Proceedings of 5th International Conference on Erosion by Liquid and Solid Impact JE Field, Pap. 10. Cambridge, UK: Cavendish Lab.
    [Google Scholar]
  30. Hancox NL, Brunton JH. 1966. Erosion of solids by repeated impact of liquid drops. Philos. Trans. R. Soc. A 260:121–39
    [Google Scholar]
  31. Hartley DM, Alonso CV. 1991. Numerical study of the maximum boundary shear stress induced by raindrop impact. Water Resour. Res. 27:1819–26
    [Google Scholar]
  32. Hartley DM, Julien PY. 1992. Boundary shear stress induced by raindrop impact. J. Hydraul. Res. 30:341–59
    [Google Scholar]
  33. Hendrix MHW, Bouwhuis W, van der Meer D, Lohse D, Snoeijer JH 2016. Universal mechanism for air entrainment during liquid impact. J. Fluid Mech. 789:708–25
    [Google Scholar]
  34. Howland CJ, Antkowiak A, Castrejon-Pita JR, Howison SD, Oliver JM et al. 2016. It's harder to splash on soft solids. Phys. Rev. Lett. 117:184502
    [Google Scholar]
  35. Imeson AC, Vis R, de Water E. 1981. The measurement of water-drop impact forces with a piezo-electric transducer. Catena 8:83–96
    [Google Scholar]
  36. Josserand C, Ray P, Zaleski S 2016. Droplet impact on a thin liquid film: anatomy of the splash. J. Fluid Mech. 802:775–805
    [Google Scholar]
  37. Josserand C, Thoroddsen ST. 2016. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48:365–91
    [Google Scholar]
  38. Josserand C, Zaleski S. 2003. Droplet splashing on a thin liquid film. Phys. Fluids 15:1650–57
    [Google Scholar]
  39. Joung YS, Buie CR. 2015. Aerosol generation by raindrop impact on soil. Nat. Commun. 6:6083
    [Google Scholar]
  40. Katsuragi H. 2010. Morphology scaling of drop impact onto a granular layer. Phys. Rev. Lett. 104:218001
    [Google Scholar]
  41. Kim S, Wu Z, Esmaili E, Dombroskie JJ, Jung S. 2020. How a raindrop gets shattered on biological surfaces. PNAS 117:13901–7
    [Google Scholar]
  42. Kolinski JM, Rubinstein SM, Mandre S, Brenner MP, Weitz DA, Mahadevan L. 2012. Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108:074503
    [Google Scholar]
  43. Kondo T, Ando K. 2019. Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Phys. Fluids 31:013303
    [Google Scholar]
  44. Laan N, de Bruin KG, Bartolo D, Josserand C, Bonn D 2014. Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2:044018
    [Google Scholar]
  45. Lagubeau G, Fontelos MA, Josserand C, Maurel A, Pagneux V, Petitjeans P. 2012. Spreading dynamics of drop impacts. J. Fluids Mech. 713:50–60
    [Google Scholar]
  46. Lamb H. 1945. Hydrodynamics. New York: Dover
    [Google Scholar]
  47. Lastakowski H, Boyer F, Biance AL, Pirat C, Ybert C 2014. Bridging local to global dynamics of drop impact onto solid substrates. J. Fluids Mech. 747:103–18
    [Google Scholar]
  48. Laws JO. 1940. Recent studies in raindrops and erosion. Agric. Eng. 21:431–33
    [Google Scholar]
  49. Lee JS, Weon BM, Je JH, Fezzaa K. 2012. How does an air film evolve into a bubble during drop impact?. Phys. Rev. Lett. 109:204501
    [Google Scholar]
  50. Lesser MB, Field JE. 1983. The impact of compressible liquids. Annu. Rev. Fluid Mech. 15:97–122
    [Google Scholar]
  51. Li J, Zhang B, Guo P, Lv Q 2014. Impact force of a low speed water droplet colliding on a solid surface. J. Appl. Phys. 116:214903
    [Google Scholar]
  52. Liu T, Cao B, Liu X, Sun T-P, Cheng X. 2020. Explosion cratering in 3D granular media. Soft Matter 16:1323–32
    [Google Scholar]
  53. Long EJ, Hargrave GK, Cooper JR, Kitchener BGB, Parsons AJ et al. 2014. Experimental investigation into the impact of a liquid droplet onto a granular bed using three-dimensional, time-resolved, particle tracking. Phys. Rev. E 89:032201
    [Google Scholar]
  54. Mandre S, Mani M, Brenner MP. 2009. Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102:134502
    [Google Scholar]
  55. Mangili S, Antonini C, Marengo M, Amirfazli A 2012. Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter 8:10045–54
    [Google Scholar]
  56. Mani M, Mandre S, Brenner MP 2010. Events before droplet splashing on a solid surface. J. Fluid Mech. 647:163–85
    [Google Scholar]
  57. Marengo M, Antonini C, Roisman IV, Tropea C. 2011. Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 16:292–302
    [Google Scholar]
  58. Marston JO, Thoroddsen ST, Ng WK, Tan RBH. 2010. Experimental study of liquid drop impact onto a powder surface. Powder Technol. 203:223–36
    [Google Scholar]
  59. Mirels H. 1955. Laminar boundary layer behind shock advancing into stationary fluid Tech. Note 3401 Natl. Adv. Comm. Aeronaut. Washington, DC:
  60. Mitchell BR, Bate T, Klewicki J, Korkolis Y, Kinsey B. 2017. Experimental investigation of droplet impact on metal surfaces in reduced ambient pressure. Proc. Manuf. 10:730–36
    [Google Scholar]
  61. Mitchell BR, Klewicki JC, Korkolis YP, Kinsey BL. 2019a. Normal impact force of Rayleigh jets. Phys. Rev. Fluids 4:113603
    [Google Scholar]
  62. Mitchell BR, Klewicki JC, Korkolis YP, Kinsey BL. 2019b. The transient force profile of low-speed droplet impact: measurements and model. J. Fluid Mech. 867:300–22
    [Google Scholar]
  63. Mitchell BR, Nassiri A, Locke M, Klewicki J, Korkolis Y, Kinsey B. 2016. Experimental and numerical framework for study of low velocity water droplet impact dynamics. Proceedings of ASME 2016: 11th International Manufacturing Science and Engineering Conference Pap. V001T002A047. New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  64. Mundo C, Sommerfeld M, Tropea C. 1995. Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 21:151–73
    [Google Scholar]
  65. Mutchler CK, Young RA. 1975. Soil detachment by raindrops. Present Prospective Technology for Predicting Sediment Yields and Sources114–17 Washington, DC: US Dep. Agric.
    [Google Scholar]
  66. Nearing MA, Bradford JM. 1987. Relationships between waterdrop properties and forces of impact. Soil Sci. Soc. Am. J. 51:425–30
    [Google Scholar]
  67. Nearing MA, Bradford JM, Holtz RD. 1986. Measurement of force versus time relations for waterdrop impact. Soil Sci. Soc. Am. J. 50:1532–36
    [Google Scholar]
  68. Nefzaoui E, Skurtys O. 2012. Impact of a liquid drop on a granular medium: inertia, viscosity and surface tension effects on the drop deformation. Exp. Therm. Fluid Sci. 41:43–50
    [Google Scholar]
  69. Obreschkow D, Dorsaz N, Kobel P, de Bosset A, Tinguely M et al. 2011. Confined shocks inside isolated liquid volumes: a new path of erosion?. Phys. Fluids 23:101702
    [Google Scholar]
  70. Pacheco-Vazquez F. 2019. Ray systems and craters generated by the impact of nonspherical projectiles. Phys. Rev. Lett. 122:164501
    [Google Scholar]
  71. Palmer RS. 1965. Water drop impact forces. Trans. Am. Soc. Agric. Eng. 8:69–71
    [Google Scholar]
  72. Pepper RE, Courbin L, Stone HA. 2008. Splashing on elastic membranes: the importance of early-time dynamics. Phys. Fluids 20:082103
    [Google Scholar]
  73. Petersson BAT. 1995. The liquid drop impact as a source of sound and vibration. Build. Acoust. 2:585–624
    [Google Scholar]
  74. Philippi J, Lagree PY, Antkowiak A. 2016. Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795:96–135
    [Google Scholar]
  75. Planchon O, Mouche E. 2010. A physical model for the action of raindrop erosion on soil microtopography. Soil Sci. Soc. Am. J. 74:1092–103
    [Google Scholar]
  76. Popinet S. 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228:5838–66
    [Google Scholar]
  77. Prosperetti S, Oguz HN. 1993. The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech. 25:577–602
    [Google Scholar]
  78. Rein M. 1993. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12:61–93
    [Google Scholar]
  79. Riboux G, Gordillo JM. 2014. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113:024507
    [Google Scholar]
  80. Riboux G, Gordillo JM. 2017. Boundary-layer effects in droplet splashing. Phys. Rev. E 96:013105
    [Google Scholar]
  81. Richard D, Clanet C, Quéré D. 2002. Contact time of a bouncing drop. Nature 417:811
    [Google Scholar]
  82. Rioboo R, Marengo M, Tropea C. 2002. Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33:112–24
    [Google Scholar]
  83. Rochester MC, Brunton JH 1979. Pressure distribution during drop impact. Proceedings of the 5th International Conference on Erosion by Liquid and Solid Impact JE Field, Pap. 6. Cambridge, UK: Cavendish Lab.
    [Google Scholar]
  84. Roisman IV. 2009. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21:052104
    [Google Scholar]
  85. Roisman IV, Berberovic E, Tropea C 2009. Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21:052103
    [Google Scholar]
  86. Scardovelli R, Zaleski S. 1999. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31:567–603
    [Google Scholar]
  87. Schlichting H, Gersten K. 2000. Boundary-Layer Theory Berlin: Springer. , 8th ed..
  88. Schmid G, Kingan MJ, Panton L, Willmott GR, Yang Y et al. 2021. On the measurement and prediction of rainfall noise. Appl. Acoust. 171:107636
    [Google Scholar]
  89. Schroll RD, Josserand C, Zaleski S, Zhang WW. 2010. Impact of a viscous liquid drop. Phys. Rev. Lett. 104:034504
    [Google Scholar]
  90. Smith FT, Li L, Wu GX 2003. Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482:291–318
    [Google Scholar]
  91. Soto D, De Larivière AB, Boutillon X, Clanet C, Quéré D 2014. The force of impacting rain. Soft Matter 10:4929–34
    [Google Scholar]
  92. Sun T-P, Alvarez-Novoa F, Andrade K, Gutierrez P, Gordillo L, Cheng X 2021. Erosion by dripping drops: the stress distribution and surface shock wave of drop impact. arXiv:2108.09398 [physics.flu-dyn]
  93. Tatekura Y, Watanabe M, Kobayashi K, Sanada T 2018. Pressure generated at the instant of impact between a liquid droplet and solid surface. R. Soc. Open Sci. 5:181101
    [Google Scholar]
  94. Terry JP. 1998. A rainsplash component analysis to define mechanisms of soil detachment and transportation. Aust. J. Soil Res. 36:525–42
    [Google Scholar]
  95. Thanh-Vinh N, Matsumoto K, Shimoyama I 2016. Pressure distribution on the contact area during the impact of a droplet on a texture surface. Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)177–80 New York: IEEE
    [Google Scholar]
  96. Thanh-Vinh N, Shimoyama I. 2019. Maximum pressure caused by droplet impact is dependent on the droplet size. Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII813–16 New York: IEEE
    [Google Scholar]
  97. Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y. 2005. The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545:203–12
    [Google Scholar]
  98. Uehara JS, Ambroso MA, Ojha RP, Durian DJ. 2003. Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90:194301
    [Google Scholar]
  99. Ukiwe C, Kwok DY. 2005. On the maximal spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–73
    [Google Scholar]
  100. Visser CW, Frommhold PE, Wildeman S, Mettin R, Lohse D, Sun C 2015. Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11:1708–22
    [Google Scholar]
  101. Wagner H. 1932. Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12:193–215
    [Google Scholar]
  102. Wijshoff H. 2018. Drop dynamics in the inkjet printing process. Curr. Opin. Colloid Interface Sci. 36:20–27
    [Google Scholar]
  103. Wildeman S, Visser CW, Sun C, Lohse D 2016. On the spreading of impacting drops. J. Fluid Mech. 805:636–55
    [Google Scholar]
  104. Worthington AM. 1876. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. 25:261–72
    [Google Scholar]
  105. Xu L, Zhang WW, Nagel SR. 2005. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94:184505
    [Google Scholar]
  106. Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38:159–92
    [Google Scholar]
  107. Yarin AL, Roisman IV, Tropea C. 2017. Collision Phenomena in Liquids and Solids Cambridge, UK: Cambridge Univ. Press
  108. Yarin AL, Weiss DA. 1995. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283:141–73
    [Google Scholar]
  109. Yu Y, Hopkins C 2018. Experimental determination of forces applied by liquid water drops at high drop velocities impacting a glass plate with and without a shallow water layer using wavelet deconvolution. Exp. Fluids 59:84
    [Google Scholar]
  110. Zhang B, Li J, Guo P, Lv Q 2017. Experimental studies on the effect of Reynolds and Weber numbers on the impact forces of low-speed droplets colliding with a solid surface. Exp. Fluids 58:125
    [Google Scholar]
  111. Zhang Q, Gao M, Zhao R, Cheng X. 2015. Scaling of liquid-drop impact craters in wet granular media. Phys. Rev. E 92:042205
    [Google Scholar]
  112. Zhang R, Zhang B, Lv Q, Li J, Guo P 2019. Effects of droplet shape on impact force of low-speed droplets colliding with solid surface. Exp. Fluids 60:64
    [Google Scholar]
  113. Zhao R, Zhang Q, Tjugito H, Cheng X. 2015. Granular impact cratering by liquid drops: understanding raindrop imprints through an analogy to asteroid strikes. PNAS 112:342–47
    [Google Scholar]
  114. Zhao S-C, de Jong R, van der Meer D. 2015. Raindrop impact on sand: a dynamic explanation of crater morphologies. Soft Matter 11:6562–68
    [Google Scholar]
  115. Zhao S-C, de Jong R, van der Meer D. 2017. Liquid-grain mixing suppresses droplet spreading and splashing during impact. Phys. Rev. Lett. 118:054502
    [Google Scholar]
  116. Zhao S-C, de Jong R, van der Meer D. 2019. Formation of a hidden cavity below droplets impacting on a granular substrate. J. Fluid Mech. 880:59–72
    [Google Scholar]
  117. Zhou Q, Li N, Chen X, Xu T, Hui S, Zhang D 2008. Liquid drop impact on solid surface with application to water drop erosion on turbine blades, part II: axisymmetric solution and erosion analysis. Int. J. Mech. Sci. 50:1543–58
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030321-103941
Loading
/content/journals/10.1146/annurev-fluid-030321-103941
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error