Skip to main content
Log in

Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A numerical scheme for the effects of vibration on nanofluid pool boiling heat transfer was developed. For this purpose, a horizontal flat vibrating heated surface was considered. To model this phase-change phenomenon, the Eulerian-Eulerian approach was employed accompanied by the Rensselaer Polytechnic Institute (RPI) model to estimate the boiling heat flux on a solid surface, based on transient simulation. The k-ε turbulence model was used for simulating the Reynolds stresses appearing in the averaged Navier Stokes equation. The effects of the amplitude and frequency of vibration, nanofluid concentration along with magnitude of the heat flux on pool boiling heat transfer characteristics including heat transfer coefficient (HTC), vapor volume fraction and nanofluid velocity were studied. New analytical correlations for analyzing the heat transfer coefficient and nanofluid velocity based on the wall superheat temperature, amplitude and frequency of vibration were also developed. Results showed that applying mechanical vibration increased the boiling curve slope and the heat transfer coefficient. As a consequence, an increase of up to 30.11% and 17.5% in the heat transfer rate was achieved at lower heat fluxes for higher amplitude and frequency of oscillations, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Atc :

fraction of heater area occupied by bubbles

aif :

interfacial area concentration [m]

C p :

specific heat [J/kg·K]

y:

height of the pool boiling chamber [m]

dbubble :

bubble diameter [m]

dw :

bubble departure diameter on the wall [m]

F lg :

action of interfacial forces from vapor on liquid [N]

Fgl :

action of interfacial forces from liquid on vapor [N]

f:

bubble departure frequency [Hz]

f vib :

heated wall vibration frequency [Hz]

Y wall :

vibration amplitude

α :

volume fraction

Si :

additional source terms due to coalescence and break age [kg/m3·s]

fi :

scalar fraction related to the number density of the discrete bubble classes

G:

mass flux [kg/m2·s]

Re:

Reynolds number

Pr:

Prandtl number

g:

gravitational constant [m/s2]

H:

specific enthalpy [J/kg]

h:

interfacial heat transfer coefficient [J/kg]

hfg :

specific latent heat of vaporization [J/kg]

k:

conductivity [W7m2·K]

m:

mass [kg]

Na :

active nucleation site density [m2]

P:

pressure [N/m2]

Qc :

heat transfer due to forced convective [W/m2]

Qc :

heat transfer due to forced evaporation [W/m2]

Qtc :

heat transfer due to transient conduction [W/m2]

T:

temperature [K]

Tsup :

wall superheat temperature [K]=Tw−Tsat

Tw :

wall temperature [K]

ΔT:

difference in temperature [K]

t:

time [s]

u:

velocity [m/s]

y+:

non-dimensional distance to the wall

μ :

viscosity [Pa·s]

ρ :

density [kg/m3]

σ :

surface tension [N/m]

Γ lg :

interfacial mass transfer from vapor to liquid [kg/m3·s]

Γ gl :

interfacial mass transfer from liquid to vapor [kg/m3·s]

ϕ:

volume fraction [%]

g:

vapor

l :

liquid

W:

wall

θ:

contact angle [°]

eff:

effective

References

  1. B. Sutharshan, M. Mutyala, R. Vijuk and A. Mishra, Energy Procedia, 7, 293 (2011).

    Article  CAS  Google Scholar 

  2. E. Çiftçi and A. Sözen, Heat Transf. Res., 51, 10431059 (2020).

    Google Scholar 

  3. H. Alimoradi, M. Shams, N. Ashgriz and A. Bozorgnezhad, Case Stud. Therm. Eng., 24, 100829 (2020).

    Article  Google Scholar 

  4. M. H. Zolfagharnasab, M. Salimi, H. Zolfagharnasab, H. Alimoradi, M. Shams and C. Aghanajafi, Powder Technol., 380, 1 (2021).

    Article  CAS  Google Scholar 

  5. J. Ham and H. Cho, Appl. Therm. Eng., 108, 158 (2016).

    Article  CAS  Google Scholar 

  6. H. Alimoradi, M. Shams and Z. Valizadeh, Modares Mech. Eng., 16(12), 545 (2017).

    Google Scholar 

  7. A. Bozorgnezhad, M. Shams, H. Kanani and M. Hasheminasab, J. Dispers. Sci. Technol., 36(8), 1190 (2015).

    Article  CAS  Google Scholar 

  8. H. Alimoradi and M. Shams, Modares Mech. Eng., 19(7), 1613 (2019).

    Google Scholar 

  9. M. Roodbari, H. Alimoradi, M. Shams and C. Aghanajafi, J. Therm. Anal. Calorim., 1 (2021).

  10. E. Çiftçi and A. Sözen, Int. J. Numer. Methods Heat Fluid Flow., 31, 2652 (2020).

    Google Scholar 

  11. S. Etedali, M. Afrand and A. Abdollahi, Int. J. Therm. Sci., 145, 105977 (2019).

    Article  CAS  Google Scholar 

  12. V. Sajith, M. R. Madhusoodanan and C. B. Sobhan, ASME 2008, 555561 (2008).

  13. M. Hasheminasab, A. Bozorgnezhad, M. Shams, G. Ahmadi and H. Kanani, in: ASME 2014 12th Int. Conf. Nanochannels, Microchannels Minichannels, ICNMM2014-21586, V001T07A002, Chicago, Illinois (2014).

  14. A. Bozorgnezhad, M. Shams, G. Ahmadi, H. Kanani and M. Hasheminasab, in: ASME/JSME/KSME 2015 Jt. Fluids Eng. Conf., AJKFluids2015-22299, V001T22A004, Seoul, South Korea (2015).

  15. A. Bozorgnezhad, M. Shams, H. Kanani, M. Hasheminasab and G. Ahmadi, Int. J. Hydrogen Energy, 41(42), 19164 (2016).

    Article  CAS  Google Scholar 

  16. M. Ashrafi, M. Shams, A. Bozorgnezhad and G. Ahmadi, Heat Mass Transf., 52(12), 2671 (2016).

    Article  CAS  Google Scholar 

  17. H. Atashi, A. Alaei, M. H. Kafshgari, R. Aeinehvand and S. K. Rahimi, Exp. Heat Transf., 27(5), 428 (2014).

    Article  Google Scholar 

  18. J. H. Jeong and Y. C. Kwon, Heat Mass Transf. und Stoffuebertragung, 42(12), 1155 (2006).

    Article  CAS  Google Scholar 

  19. N. Unno, K. Yuki, J. Taniguchi and S. Satake, Int. J. Heat Mass Transf., 153, 119588 (2020).

    Article  Google Scholar 

  20. A. Sathyabhama and S. P. Prashanth, Heat Transf. — Asian Res., 46, 4960 (2015).

    Google Scholar 

  21. H. Y. Kim, Y. G. Kim and B. H. Kang, Int. J. Heat Mass Transf., 47(12–13), 2831 (2004).

    Article  CAS  Google Scholar 

  22. S. Alangar, Heat Mass Transf. und Stoffuebertragung, 53(1), 73 (2017).

    Article  CAS  Google Scholar 

  23. H. Alimoradi and M. Shams, Appl. Therm. Eng., 111, 1039 (2017).

    Article  Google Scholar 

  24. S. N. Shoghl, M. Bahrami and M. K. Moraveji, Int. Commun. Heat Mass Transf., 58, 12 (2014).

    Article  CAS  Google Scholar 

  25. Z. Valizadeh and M. Shams, Heat Mass Transf. und Stoffuebertragung, 52(8), 1501 (2016).

    Article  CAS  Google Scholar 

  26. M. S. Kamel, M. S. Al-agha, F. Lezsovits and O. Mahian, J. Therm. Anal. Calorim., 142, 493505 (2019).

    Google Scholar 

  27. S. M. A. N. R. Abadi, A. Ahmadpour and J. P. Meyer, Int. J. Multiph. Flow, 118, 97 (2019).

    Article  CAS  Google Scholar 

  28. H. Shokouhmand and S. M. A. N. R. Abadi, Heat Mass Transf. und Stoffuebertragung, 46(8–9), 891 (2010).

    Article  Google Scholar 

  29. H. Shokouhmand, S. M. A. Noori Rahim Abadi and A. Jafari, Int. J. Mech. Mater. Des., 7, 313 (2011).

    Article  CAS  Google Scholar 

  30. J. Vadasz, J. Meyer and S. Govender, Transp. Porous Media, 103, 279294 (2014).

    Article  Google Scholar 

  31. X. Li, K. Li, J. Tu and J. Buongiorno, Int. J. Heat Mass Transf., 69, 443 (2014).

    Article  Google Scholar 

  32. X. Li, Y. Yuan and J. Tu, Int. J. Heat Mass Transf., 91, 467 (2015).

    Article  CAS  Google Scholar 

  33. X. Li, Y. Yuan and J. Tu, Int. J. Therm. Sci., 98, 42 (2015).

    Article  CAS  Google Scholar 

  34. M. Mohammadpourfard, H. Aminfar and M. Sahraro, Heat Mass Transf. und Stoffuebertragung, 50(8), 1167 (2014).

    Article  CAS  Google Scholar 

  35. R. L. Hamilton and O. K. Crosser, Ind. Eng. Chem. Fundam., 1, 187 (1962).

    Article  CAS  Google Scholar 

  36. H. C. Brinkman, J. Chem. Phys., 20(4), 571 (1952).

    Article  CAS  Google Scholar 

  37. M. Ishii and N. Zuber, AIChE J., 25(5), 843 (1979).

    Article  CAS  Google Scholar 

  38. W. E. Ranz and W. R. Marshall, Chem. Eng. Progress, 48, 141146 (1952).

    Google Scholar 

  39. M. Lopez de Bertodano, R. T. Lahey and O. C. Jones, Nucl. Eng. Des., 146, 4352 (1994).

    Article  Google Scholar 

  40. N. Kurul and M. Z. Podowski, Proceedings of 27th national heat transfer conference at minnieapolis, MN, USA, 2831 (1991).

  41. N. Kurul and M. Z. Podowski, Proceedings of the 9th international heat transfer conference at Jerusalem, 2, 2126 (1990).

    Google Scholar 

  42. H. Salehi and F. Hormozi, Heat Mass Transf., 54, 773784 (2017).

    Google Scholar 

  43. E. Krepper, B. Končar and Y. Egorov, Nucl. Eng. Des., 237(7), 716 (2007).

    Article  CAS  Google Scholar 

  44. V. I. Tolubinsky and D. M. Kostanchuk, Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling, in International Heat Transfer Conference 4, 23 (1970).

  45. C. Gerardi, J. Buongiorno, L. Hu and T. Mckrell, Nanoscale Res. Lett., 6, 232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. R. Cole, AIChE J., 6(4), 533 (1960).

    Article  CAS  Google Scholar 

  47. A. Akbari, S. A. Alavi Fazel, S. Maghsoodi and A. S. Kootenaei, J. Therm. Anal. Calorim., 135(1), 697 (2019).

    Article  CAS  Google Scholar 

  48. H. Aminfar, M. Mohammadpourfard and M. Sahraro, Comput. Fluids, 66, 29 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Shams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimoradi, H., Zaboli, S. & Shams, M. Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid. Korean J. Chem. Eng. 39, 69–85 (2022). https://doi.org/10.1007/s11814-021-0895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0895-0

Keywords

Navigation