Skip to main content

Advertisement

Log in

Pharmacologic treatment with OKN-007 reduces alpha-motor neuron loss in spinal cord of aging mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging is associated with molecular and functional declines in multiple physiologic systems. We have previously reported age-related changes in spinal cord that included a decline in α-motor neuron numbers, axonal loss, and demyelination associated with increased inflammation and blood-spinal cord barrier (BSCB) permeability. These changes may influence other pathologies associated with aging, in particular loss of muscle mass and function (sarcopenia), which we and others have shown is accompanied by neuromuscular junction disruption and loss of innervation. Interventions to protect and maintain motor neuron viability and function in aging are currently lacking and could have a significant impact on improving healthspan. Here we tested a promising compound, OKN-007, that has known antioxidant, anti-inflammatory and neuroprotective properties, as a potential intervention in age-related changes in the spinal cord. OKN-007 is a low molecular weight disulfonyl derivative of (N-tert Butyl-α-phenylnitrone) (PBN) that can easily cross the blood–brain barrier. We treated middle age (16 month) wild-type male mice with OKN-007 in drinking water at a dose of 150 mg/kg/day until 25 months of age. OKN-007 treatment exerted a number of beneficial effects in the aging spinal cord, including a 35% increase in the number of lumbar α-motor neurons in OKN-treated old mice compared to age-matched controls. Brain spinal cord barrier permeability, which is increased in aging spinal cord, was also blunted by OKN-007 treatment. Age-related changes in microglia proliferation and activation are blunted by OKN-007, while we found no effect on astrocyte proliferation. Transcriptome analysis identified expression changes in a number of genes that are involved in neuronal structure and function and revealed a subset of genes whose changes in response to aging are reversed by OKN-007 treatment. Overall, our findings suggest that OKN-007 exerts neuroprotective and anti-inflammatory effects on the aging spinal cord and support OKN-007 as a potential therapeutic to improve α-motor neuron health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Terao S, Sobue G, Hashizume Y, Li M, Inagaki T, Mitsuma T. Age-related changes in human spinal ventral horn cells with special reference to the loss of small neurons in the intermediate zone: a quantitative analysis. Acta Neuropathol. 1996;92(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou MGN, Zhang Ch. Tang W Aging process of the human lumbar spinal cord: A morphometric analysis. Neuropathology. 1996;16(2):106–11.

    Article  Google Scholar 

  3. Cruz-Sanchez FF, Moral A, Rossi ML, Quinto L, Castejon C, Tolosa E, et al. Synaptophysin in spinal anterior horn in aging and ALS: an immunohistological study. J Neural Transm (Vienna). 1996;103(11):1317–29.

    Article  CAS  Google Scholar 

  4. Kawamura Y, O’Brien P, Okazaki H, Dyck PJ. Lumbar motoneurons of man II: the number and diameter distribution of large- and intermediate-diameter cytons in “motoneuron columns” of spinal cord of man. J Neuropathol Exp Neurol. 1977;36(5):861–70.

    Article  CAS  PubMed  Google Scholar 

  5. Kawamura Y, Okazaki H, O’Brien PC, Dych PJ. Lumbar motoneurons of man: I) number and diameter histogram of alpha and gamma axons of ventral root. J Neuropathol Exp Neurol. 1977;36(5):853–60.

    Article  CAS  PubMed  Google Scholar 

  6. Tomlinson BE, Irving D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci. 1977;34(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  7. Drey M, Krieger B, Sieber CC, Bauer JM, Hettwer S, Bertsch T, et al. Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc. 2014;15(6):435–9.

    Article  PubMed  Google Scholar 

  8. Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594(16):4525–36.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Goto N, Suzuki M, Ke M. Age-related reductions in number and size of anterior horn cells at C6 level of the human spinal cord. Okajimas Folia Anat Jpn. 1996;73(4):171–7.

    Article  CAS  PubMed  Google Scholar 

  10. Campbell MJ, McComas AJ, Petito F. Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry. 1973;36(2):174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, et al. Molecular changes associated with spinal cord aging. Geroscience. 2020;42(2):765–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A. 2010;107(33):14863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caccia MR, Harris JB, Johnson MA. Morphology and physiology of skeletal muscle in aging rodents. Muscle Nerve. 1979;2(3):202–12.

    Article  CAS  PubMed  Google Scholar 

  14. Maxwell N, Castro RW, Sutherland NM, Vaughan KL, Szarowicz MD, de Cabo R, et al. alpha-Motor neurons are spared from aging while their synaptic inputs degenerate in monkeys and mice. Aging Cell. 2018;17(2):e12726. https://doi.org/10.1111/acel.12726

  15. Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One. 2011;6(12):e28090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Floyd RA, Chandru HK, He T, Towner R. Anti-cancer activity of nitrones and observations on mechanism of action. Anticancer Agents Med Chem. 2011;11(4):373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coutinho de Souza P, Smith N, Atolagbe O, Ziegler J, Njoku C, Lerner M, et al. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model. Free Radic Biol Med. 2015;87:157–68.

  18. Altinoz MA, Elmaci I. Targeting nitric oxide and NMDA receptor-associated pathways in treatment of high grade glial tumors. Hypotheses for nitro-memantine and nitrones. Nitric Oxide. 2018;79:68-83.

  19. Fan LW, Tien LT, Zheng B, Pang Y, Rhodes PG, Cai Z. Interleukin-1beta-induced brain injury and neurobehavioral dysfunctions in juvenile rats can be attenuated by alpha-phenyl-n-tert-butyl-nitrone. Neuroscience. 2010;168(1):240–52.

    Article  CAS  PubMed  Google Scholar 

  20. Clausen F, Marklund N, Lewen A, Hillered L. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma. 2008;25(12):1449–57.

    Article  PubMed  Google Scholar 

  21. Garcia-Alloza M, Borrelli LA, Hyman BT, Bacskai BJ. Antioxidants have a rapid and long-lasting effect on neuritic abnormalities in APP:PS1 mice. Neurobiol Aging. 2010;31(12):2058–68.

    Article  CAS  PubMed  Google Scholar 

  22. Culot M, Mysiorek C, Renftel M, Roussel BD, Hommet Y, Vivien D, et al. Cerebrovascular protection as a possible mechanism for the protective effects of NXY-059 in preclinical models: an in vitro study. Brain Res. 2009;1294:144–52.

    Article  CAS  PubMed  Google Scholar 

  23. Janzen EG, Poyer JL, West MS, Crossley C, McCay PB. Study of reproducibility of spin trapping results in the use of C-phenyl-N-tert-butyl nitrone (PBN) for trichloromethyl radical detection in CCl4 metabolism by rat liver microsomal dispersions. Biological spin trapping I. J Biochem Biophys Methods. 1994;29(3-4):189–205.

  24. Li XY, Sun JZ, Bradamante S, Piccinini F, Bolli R. Effects of the spin trap alpha-phenyl N-tert-butyl nitrone on myocardial function and flow: a dose-response study in the open-chest dog and in the isolated rat heart. Free Radic Biol Med. 1993;14(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  25. Schaefer CF, Janzen EG, West MS, Poyer JL, Kosanke SD. Blood chemistry changes in the rat induced by high doses of nitronyl free radical spin traps. Free Radic Biol Med. 1996;21(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  26. Du X, West MB, Cheng W, Ewert DL, Li W, Saunders D, et al. Ameliorative Effects of Antioxidants on the Hippocampal Accumulation of Pathologic Tau in a Rat Model of Blast-Induced Traumatic Brain Injury. Oxid Med Cell Longev. 2016;2016:4159357.

    Article  PubMed  Google Scholar 

  27. Lu J, Li W, Du X, Ewert DL, West MB, Stewart C, et al. Antioxidants reduce cellular and functional changes induced by intense noise in the inner ear and cochlear nucleus. J Assoc Res Otolaryngol. 2014;15(3):353–72.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ewert DL, Lu J, Li W, Du X, Floyd R, Kopke R. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss. Hear Res. 2012;285(1–2):29–39.

    Article  CAS  PubMed  Google Scholar 

  29. Floyd RA, Hensley K, Bing G. Evidence for enhanced neuro-inflammatory processes in neurodegenerative diseases and the action of nitrones as potential therapeutics. J Neural Transm Suppl. 2000;60:387–414.

    Google Scholar 

  30. Floyd RA, Castro Faria Neto HC, Zimmerman GA, Hensley K, Towner RA. Nitrone-based therapeutics for neurodegenerative diseases: their use alone or in combination with lanthionines. Free Radic Biol Med. 2013;62:145-56.

  31. Towner RA, Saunders D, Smith N, Gulej R, McKenzie T, Lawrence B, et al. Anti-inflammatory agent, OKN-007, reverses long-term neuroinflammatory responses in a rat encephalopathy model as assessed by multi-parametric MRI: implications for aging-associated neuroinflammation. Geroscience. 2019;41(4):483–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Towner RA, Smith N, Saunders D, Brown CA, Cai X, Ziegler J, et al. OKN-007 Increases temozolomide (TMZ) Sensitivity and Suppresses TMZ-Resistant Glioblastoma (GBM) Tumor Growth. Transl Oncol. 2019;12(2):320–35.

    Article  PubMed  Google Scholar 

  33. Coutinho de Souza P, Mallory S, Smith N, Saunders D, Li XN, McNall-Knapp RY, et al. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts. PLoS One. 2015;10(8):e0134276.

  34. Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke. 2007;38(8):2262–9.

    Article  CAS  PubMed  Google Scholar 

  35. Wemer J, Cheng YF, Nilsson D, Reinholdsson I, Fransson B, Lanbeck Vallen K, et al. Safety, tolerability and pharmacokinetics of escalating doses of NXY-059 in healthy young and elderly subjects. Curr Med Res Opin. 2006;22(9):1813–23.

    Article  CAS  PubMed  Google Scholar 

  36. Fong JJ, Rhoney DH. NXY-059: review of neuroprotective potential for acute stroke. Ann Pharmacother. 2006;40(3):461–71.

    Article  CAS  PubMed  Google Scholar 

  37. Zai-Wang Li J-JZ, Su-Ya Li, Ting-Ting Cao, Yi Wang, Yi Guo, Guang-Jun Xi. Blocking the EGFR/p38/NF-κB signaling pathway alleviates disruption of BSCB and subsequent inflammation after spinal cord injury. Neurochem Int. 2021;150:105190. https://doi.org/10.1016/j.neuint.2021.105190

  38. Sun R, Ge L, Cao Y, Wu W, Wu Y, Zhu H, et al. MiR-429 regulates blood-spinal cord barrier permeability by targeting Kruppel-like factor 6. Biochem Biophys Res Commun. 2020;525(3):740–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar H, Jo MJ, Choi H, Muttigi MS, Shon S, Kim BJ, et al. Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood-Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neurobiol. 2018;55(3):2577–90.

    Article  CAS  PubMed  Google Scholar 

  40. Reinhold AK, Rittner HL. Barrier function in the peripheral and central nervous system-a review. Pflugers Arch. 2017;469(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  41. Montague-Cardoso K, Malcangio M. Changes in blood-spinal cord barrier permeability and neuroimmune interactions in the underlying mechanisms of chronic pain. Pain Rep. 2021;6(1):e879.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27(4):697–709.

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y, Rosenberg GA. MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods Mol Biol. 2011;762:333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Senatorov VV, Jr., Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFbeta signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 2019;11(521).

  46. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–43.

    Article  CAS  PubMed  Google Scholar 

  47. Suzumura A, Sawada M, Yamamoto H, Marunouchi T. Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol. 1993;151(4):2150–8.

    CAS  PubMed  Google Scholar 

  48. Esen N, Rainey-Barger EK, Huber AK, Blakely PK, Irani DN. Type-I interferons suppress microglial production of the lymphoid chemokine, CXCL13. Glia. 2014;62(9):1452–62.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY, et al. Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem. 2010;114(3):717–27.

    Article  CAS  PubMed  Google Scholar 

  50. Fan Y, Chen Z, Pathak JL, Carneiro AMD, Chung CY. Differential Regulation of Adhesion and Phagocytosis of Resting and Activated Microglia by Dopamine. Front Cell Neurosci. 2018;12:309.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, et al. Molecular signature of different lesion types in the brain white matter of patients with progressive multiple sclerosis. Acta Neuropathol Commun. 2019;7(1):205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly Van Remmen.

Ethics declarations

Conflict of interest statement

The authors declare no competing financial interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 335 KB)

Supplementary file2 (PNG 156 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piekarz, K.M., Georgescu, C., Wren, J.D. et al. Pharmacologic treatment with OKN-007 reduces alpha-motor neuron loss in spinal cord of aging mice. GeroScience 44, 67–81 (2022). https://doi.org/10.1007/s11357-021-00506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00506-y

Keywords

Navigation