Skip to main content
Log in

Spatial patterns of soil microbial communities and implications for precision soil management at the field scale

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Understanding the spatial patterns of soil microbial communities and influencing factors is a prerequisite for soil health assessments and site-specific management to improve crop production. However, soil microbial community structure at the field scale is complicated by the interactions among topography and soil properties. The objectives of this study were to (1) characterize the spatial variability patterns of soil microbial communities at the field scale; (2) assess the influence of soil physico-chemical properties, topography and management on soil microbial biomass spatial variability. This study was conducted in a 194-ha commercially-managed field in Hale County, Texas, in 2017. A total of 212 composite soil samples were collected at 0–0.15 m depth and analyzed via the ester-linked fatty acid methyl ester (EL-FAME) method to characterize the microbial community structure and biomass. Soil electrical conductivity (EC), pH, soil texture, soil water content (SWC), soil organic carbon (SOC) and total nitrogen (TN) were determined for each soil sample. Topographic attributes, including elevation and slope, were derived from real-time kinematic (RTK) point elevation data. Interpolated microbial community maps at this scale revealed a spatially structured distribution of microbial biomass and diversity with patches of several hundred meters in different directions corresponding to the distribution of soil types and topography. Most of the microbial communities were autocorrelated at greater ranges within the same soil types than across different soils. The distribution of total soil microbial biomass was mainly affected by SOC and SWC. Soil pH and C:N ratio had a negative impact on the biomass of bacterial communities. Biomass of fungal communities was negatively influenced by slope and elevation. The results of this study have the potential to provide a basis for designing soil sampling plans in characterizing microbial community distribution and site-specific soil health management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. (Basemap source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopoand the GIS User Community) [EsB: Estacado loam, 1–3% slopes (Fine-loamy, mixed, superactive, thermic Aridic Paleustolls); MkB: Mansker loam, 0–3% slopes (Coarse-loamy, carbonatic, thermic Calcidic Paleustolls); Lo: Lofton clay loam: 0.5% slopes (Fine, mixed, superactive, thermic Vertic Argiustolls); OtA: Olton loam, 0–1% slopes (Fine, mixed, superactive, thermic Aridic Paleustolls); OtB: Olton loam, 1–2% slopes (Fine, mixed, superactive, thermic Aridic Paleustolls); PuA: Pullman clay loam, 0–1% slopes (Fine, mixed, superactive, thermic Torrertic Paleustolls); Ra: Randall clay (Fine, smectitic, thermic Ustic Epiaquerts) (Soil Survey Staff, 1974)]

References

  • Acosta-Martínez, V., Cotton, J., Gardner, T., Moore-Kucera, J., Zak, J., Wester, D., et al. (2014). Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Applied Soil Ecology, 84, 69–82

    Article  Google Scholar 

  • Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1–17

    Article  Google Scholar 

  • Bach, E. M., Baer, S. G., Meyer, C. K., & Six, J. (2010). Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 42(12), 2182–2191

    Article  CAS  Google Scholar 

  • Bhandari, K. B., West, C. P., Acosta-Martinez, V., Cotton, J., & Cano, A. (2018). Soil health indicators as affected by diverse forage species and mixtures in semi-arid pastures. Applied Soil Ecology, 132, 179–186

    Article  Google Scholar 

  • Bhattarai, A., Bhattarai, B., & Pandey, S. (2015). Variation of soil microbial population in different soil horizons. Journal of Microbiology & Experimentation, 2(2), 75–78

    Article  Google Scholar 

  • Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 1287–1294

    Article  Google Scholar 

  • Brussaard, L. (1997). Biodiversity and Ecosystem Functioning in Soil. Royal Swedish Academy of Sciences, 26(8), 563–570

    Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal, 58(5), 1501–1511

    Article  Google Scholar 

  • Cano, A., Núñez, A., Acosta-Martinez, V., Schipanski, M., Ghimire, R., Rice, C., et al. (2018). Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma, 328, 109–118

    Article  Google Scholar 

  • Cao, H., Chen, R., Wang, L., Jiang, L., Yang, F., Zheng, S., et al. (2016). Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Scientific Reports, 6(1), 1–10

    CAS  Google Scholar 

  • Cassel, D. K., Wendroth, O., & Nielsen, D. R. (2000). Assessing spatial variability in an agricultural experiment station field: Opportunities arising from spatial dependence. Agronomy Journal, 92(4), 706–714

    Article  Google Scholar 

  • Cavigelli, M. A., Lengnick, L. L., Buyer, J. S., Fravel, D., Handoo, Z., McCarty, G., et al. (2005). Landscape level variation in soil resources and microbial properties in a no-till corn field. Applied Soil Ecology, 29(2), 99–123

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1981). Spatial Processes: Models and Applications. London, UK: Pion Limited

    Google Scholar 

  • Constancias, F., Terrat, S., Saby, N. P. A., Horrigue, W., Villerd, J., Guillemin, J. P., et al. (2015). Mapping and determinism of soil microbial community distribution across an agricultural landscape. MicrobiologyOpen, 4(3), 505–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Davinic, M., Moore-Kucera, J., Acosta-Martínez, V., Zak, J., & Allen, V. (2013). Soil fungal distribution and functionality as affected by grazing and vegetation components of integrated crop-livestock agroecosystems. Applied Soil Ecology, 66, 61–70

    Article  Google Scholar 

  • Davis, J. C. (2002). Statistics and Data Analysis in Geology (Third Edition). New York, USA: John Wiley & Sons Ltd

    Google Scholar 

  • Dequiedt, S., Saby, N. P. A., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., et al. (2011). Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography, 20(4), 641–652

    Article  Google Scholar 

  • Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35(1), 167–176

    Article  CAS  Google Scholar 

  • Franklin, R. B., & Mills, A. L. (2003). Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiology Ecology, 44(3), 335–346

    Article  CAS  PubMed  Google Scholar 

  • Frey, S. D., Elliott, E. T., & Paustian, K. (1999). Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 31(4), 573–585

    Article  CAS  Google Scholar 

  • Gan-Mor, S., Clark, R. L., & Upchurch, B. L. (2007). Implement lateral position accuracy under RTK-GPS tractor guidance. Computers and Electronics in Agriculture, 59(1–2), 31–38

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In Klute, A. (Ed.), Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (pp. 383–411). Madison, WI, USA: Soil Science Society of America, American Society of Agronomy

    Google Scholar 

  • Gooaverts, P. (1997). Geostatistics for Natural Resources Evaluation (p. 483). New York, USA: Oxford University Press

    Google Scholar 

  • Graham, E., Grandy, S., & Thelen, M. (2012). Manure effects on soil organisms and soil quality—Emerging Issues in Animal Agriculture. Michigan State University Extension

  • Karimi, B., Terrat, S., Dequiedt, S., Saby, N. P. A., Horrigue, W., Lelièvre, M., et al. (2018). Biogeography of soil bacteria and archaea across France. Science Advances, 4(7), eaat1808. https://doi.org/10.1126/sciadv.aat1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Guillou, C., Chemidlin Prévost-Bouré, N., Karimi, B., Akkal-Corfini, N., Dequiedt, S., Nowak, V., et al. (2019). Tillage intensity and pasture in rotation effectively shape soil microbial communities at a landscape scale. MicrobiologyOpen, 8(4), e00676

  • Lehman, R. M., Acosta-Martinez, V., Buyer, J. S., Cambardella, C. A., Collins, H. P., Ducey, T. F., et al. (2015). Soil biology for resilient, healthy soil. Journal of Soil and Water Conservation, 70(1), 12A–18A

    Article  Google Scholar 

  • Li, C., Cano, A., Acosta-Martínez, V., Veum, K. S., & Moore-Kucera, J. (2020). A comparison between fatty acid methyl ester profiling methods (PLFA and EL-FAME) as soil health indicators. Soil Science Society of America Journal, 84(4), 1153–1169

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, L., Lu, J., Chen, W., Wei, G., & Lin, Y. (2020). Topography affects the soil conditions and bacterial communities along a restoration gradient on Loess-Plateau. Applied Soil Ecology, 150, 103471

    Article  Google Scholar 

  • Mauget, S. A., Adhikari, P., Leiker, G., Baumhardt, R. L., Thorp, K. R., & Ale, S. (2017). Modeling the effects of management and elevation on West Texas dryland cotton production. Agricultural and Forest Meteorology, 247, 385–398

    Article  Google Scholar 

  • McBratney, A. B., & Webster, R. (1983). How many observations are needed for regional estimation of soil properties? Soil Science, 135(3), 177–183

    Article  Google Scholar 

  • Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., et al. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44–55

    Article  Google Scholar 

  • NRCS (2008). General Soil Map of Texas. Available from: https://www.nrcs.usda.gov/wps/portal/nrcs/main/tx/soils (verified 27 October 2018)

  • Nunan, N., Wu, K., Young, I. M., Crawford, J. W., & Ritz, K. (2002). In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microbial Ecology, 44(4), 296–305

    Article  CAS  PubMed  Google Scholar 

  • Osman, K. T. (2013). Biological properties of soils. In Soils: Principles, Properties and Management (pp. 113–128). Dordrecht, The Netherlands: Springer

    Chapter  Google Scholar 

  • Parkin, T. B. (1993). Spatial variability of microbial processes in soil-A review. Journal of Environmental Quality, 22, 409–417

    Article  Google Scholar 

  • Peigné, J., Vian, J. F., Cannavacciuolo, M., Bottollier, B., & Chaussod, R. (2009). Soil sampling based on field spatial variability of soil microbial indicators. European Journal of Soil Biology, 45(5–6), 488–495

    Article  CAS  Google Scholar 

  • Piotrowska-Długosz, A., Breza-Boruta, B., & Długosz, J. (2019). Spatio-temporal heterogeneity of soil microbial properties in a conventionally managed arable field. Journal of Soils and Sediments, 19(1), 345–355

    Article  CAS  Google Scholar 

  • Piotrowska, A., & Długosz, J. (2012). Spatio-temporal variability of microbial biomass content and activities related to some physicochemical properties of Luvisols. Geoderma,173–174, 199–208

  • Powell, J. R., Karunaratne, S., Campbell, C. D., Yao, H., Robinson, L., & Singh, B. K. (2015). Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6(1), 1–10

    Article  CAS  Google Scholar 

  • R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org

  • Ranjard, L., Dequiedt, S., Chemidlin Prévost-Bouré, N., Thioulouse, J., Saby, N. P. A., Lelievre, M., et al. (2013). Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nature Communications, 4(1), 1–10

    Article  CAS  Google Scholar 

  • Rasiah, V., & Kay, B. D. (1999). Temporal dynamics of microbial biomass- and mineral-N in legume amended soils from a spatially variable landscape. Geoderma, 92(3–4), 239–256

    Article  CAS  Google Scholar 

  • Ritchie, G. S. P., & Dolling, P. J. (1985). The role of organic matter in soil acidification. Australian Journal of Soil Research, 23(5), 569–576

    Article  Google Scholar 

  • Robertson, G. P. (1987). Geostatistics in ecology: interpolating with known variance. Ecology, 68(3), 744–748

    Article  Google Scholar 

  • Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4(10), 1340–1351

    Article  PubMed  Google Scholar 

  • Ryan, M. R., & Peigné, J. (2017). Applying agroecological principles for regenerating soils. In Agroecological practices for sustainable agriculture (pp. 53–84). World Scientific (Europe)

  • Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6), 1386–1394

    Article  PubMed  Google Scholar 

  • Schutter, M. E., & Dick, R. P. (2000). Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Science Society of America Journal, 64(5), 1659–1668

    Article  CAS  Google Scholar 

  • Serna-Chavez, H. M., Fierer, N., & Van Bodegom, P. M. (2013). Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 22(10), 1162–1172

    Article  Google Scholar 

  • Shapiro, A. S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (Complete Samples). Biometrika, 52(3/4), 591–611

    Article  Google Scholar 

  • Shi, Y., Li, Y., Xiang, X., Sun, R., Yang, T., He, D., et al. (2018). Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 6(1), 27

    Article  PubMed  PubMed Central  Google Scholar 

  • Soil Survey Staff. (1974). Soil Survey of Hale County, Texas. USDA—Soil Conservation Service, Texas Agricultural Experiment Station

  • Sorensen, P. O., Germino, M. J., & Feris, K. P. (2013). Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C. Soil Biology and Biochemistry, 64, 155–163

    Article  CAS  Google Scholar 

  • Steiner, J. L., Briske, D. D., Brown, D. P., & Rottler, C. M. (2018). Vulnerability of Southern Plains agriculture to climate change. Climatic Change, 146(1–2), 201–218

    Article  Google Scholar 

  • Tajik, S., Ayoubi, S., & Lorenz, N. (2020). Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem. Applied Soil Ecology, 149, 103514

    Article  Google Scholar 

  • Tautges, N. E., Sullivan, T. S., Reardon, C. L., & Burke, I. C. (2016). Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Applied Soil Ecology, 108, 258–268

    Article  Google Scholar 

  • Turner, S., Mikutta, R., Meyer-Stüve, S., Guggenberger, G., Schaarschmidt, F., Lazar, C. S., et al. (2017). Microbial community dynamics in soil depth profiles over 120,000 years of ecosystem development. Frontiers in Microbiology, 8, 874

    Article  PubMed  PubMed Central  Google Scholar 

  • USDA-NRCS (2018). Custom Soil Resource Report for Hale County, Texas. Retrieved [February 27, 2018] from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

  • Van Groenigen, J. W., Siderius, W., & Stein, A. (1999). Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma, 87(3–4), 239–259

    Article  Google Scholar 

  • Wall, D. H., Bardgett, R. D., Covich, A. P., & Snelgrove, P. V. R. (2004). The need for understanding how biodiversity and ecosystem functioning affect ecosystem services in soils and sediments. Sustaining Biodiversity and Ecosystem Services in Soils and sediments (pp. 1–12). Washington, USA: Island Press

    Google Scholar 

  • Wardle, D. A., & Parkinson, D. (1990). Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biology and Biochemistry, 22(6), 825–834

    Article  CAS  Google Scholar 

  • Warrick, A. W., & Myers, D. E. (1987). Optimization of sampling locations for variogram calculations. Water Resources Research, 23(3), 496–500

    Article  Google Scholar 

  • Watts, D. B., Torbert, H. A., Feng, Y., & Prior, S. A. (2010). Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Science, 175(10), 474–486

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists (2nd ed). West Sussex, UK: John Wiley and Sons.1

  • Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323

    Article  Google Scholar 

  • Yfantis, E. A., Flatman, G. T., & Behar, J. V. (1987). Efficiency of kriging estimation for square, triangular, and hexagonal grids. Mathematical Geology, 19(3), 183–205

    Article  Google Scholar 

  • Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: A review. Biology and Fertility of Soils, 29(2), 111–129

    Article  CAS  Google Scholar 

  • Zimmerman, D. L. (2006). Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics, 17(6), 635–652

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of Dr. Veronica Acosta-Martinez for conducting the soil microbial analysis in her soil microbiology lab at USDA-ARS, Lubbock, Texas. We thank Mr. Jerry Brightbill and South Plains Precision Ag for assisting the data collection and providing the relevant agronomic data. This research was supported by Cotton Incorporated and Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxuan Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 Correlation between soil physico-chemical properties (0–0.15 m depth) and topography for a 194-ha field in Hale County, Texas, in 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, J., Guo, W., Cao, G. et al. Spatial patterns of soil microbial communities and implications for precision soil management at the field scale. Precision Agric 23, 1008–1026 (2022). https://doi.org/10.1007/s11119-021-09872-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09872-1

Keywords

Navigation