Skip to main content
Log in

Tandem Mass Spectrometry for the Analysis of Ginsenosides in a Phytoadaptogene Composition with Antitumor Properties

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The results of an analysis for ginsenosides in the Multiphytoadaptogene (MPA) phytoadaptogene composition with antitumor properties by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) are presented. Ginsenosides are identified with the use of commercial standards of ginsenosides and some literature data. Ginsenosides Rb1, Rb2, Rc, Rd, Rg1, Rg2, Re, Rf, and Ro are revealed in MPA. The results could be used for the standardization and quality control of phytocomplexes containing triterpenoid glycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bocharova, O.A., Karpova, R.V., Bocharov, E.V., Vershinskaya, A.A., Baryshnikova, M.A., Kazeev, I.V., Kucheryanu, V.G., Kiselevsky, M.V., et al., Phytoadaptogens in biotherapy of tumors and geriatrics (Part 1), Ross. Bioterapevticheskii Zh., 2020, vol. 19, no. 2, p. 13.

    Google Scholar 

  2. Bocharova, O.A., Karpova, R.V., Bocharov, E.V., Vershinskaya, A.A., Baryshnikova, M.A., Kazeev, I.V., Kucheryanu, V.G., and Kiselevsky, M.V., Phytoadaptogens in biotherapy of tumors and geriatrics (Part 2), Ross. Bioterapevticheskii Zh., 2020, vol. 19, no. 3, p. 12.

    Google Scholar 

  3. Liu, T., Zhao, L., Hou, H., et al., Ginsenoside 20(S)-Rg3 suppresses ovarian cancer migration via hypoxia-inducible factor 1 alpha and nuclear factor-kappa B signals, Tumor Biol., 2017, vol. 39, no. 5. https://doi.org/10.1177/1010428317692225

  4. Vinh, L.B., Park, J.U., Duy, L.X., et al., Ginsenosides from Korean red ginseng modulate T cell function via the regulation of NF-AT-mediated IL-2 production, Food Sci. Biotechnol., 2019, vol. 28, no. 1, p. 237. https://doi.org/10.1007/s10068-018-0428-8

    Article  CAS  PubMed  Google Scholar 

  5. Meng, Q., Pan, J., Liu, Y., et al., Anti-tumour effects of polysaccharide extracted from Acanthopanax senticosus and cell-mediated immunity, Exp. Ther. Med., 2018, vol. 15, no. 2, p. 1694. https://doi.org/10.3892/etm.2017.5568

    Article  CAS  PubMed  Google Scholar 

  6. Le, H.T., Nguyen, H.T., Min, H.Y., Hyun, S.Y., Kwon, S., Lee, Y., Van Le, T.H., Lee, J., Park, J.H., and Lee, H.-Y., Panaxynol, a natural Hsp90 inhibitor, effectively targets both lung cancer stem and non-stem cells, Cancer Lett. (N. Y., NY, U. S.), 2018, vol. 412, p. 297. https://doi.org/10.1016/j.canlet.2017.10.013

    Article  CAS  Google Scholar 

  7. Bocharova, O.A., Karpova, R.V., Bocharov, E.V., Vershinskaya, A.A., Baryshnikova, M.A., Kazeev, I.V., Kucheryanu, V.G., Kiselevsky, M.V., and Matveev, V.B., Research of new phytoadaptogens and possibilities of herbal formulas application, Ross. Bioterapevticheskii Zh., 2020, vol. 19, no. 4, p. 35.

    Google Scholar 

  8. Sheychenko, V.I., Bocharova, O.A., Sheychenko, O.P., Bocharov, E.V., and Bykov, V.A., Analytical capabilities of the NMR method for determining the components of Phitomix-40, Ind. Lab., Diagn. Mater., 2006, vol. 72, no. 8, p. 15.

    Google Scholar 

  9. Sheychenko, O.P., Bocharova, O.A., Sheychenko, V.I., Tolkachev, O.N., Bocharov, E.V., Karpova, R.V., and Bykov, V.A., Possibility of using electronic absorption spectra for standardization of the multicomponent preparation “Phytomix-40", Probl. Biol., Med. Pharm. Chem., 2007, vol. 5, no. 2, p. 20.

    Google Scholar 

  10. Sheychenko, O.P., Bocharova, O.A., Krapivkin, B.A., Uyutova, E.V., Karpova, R.V., Kazeev, I.V., Bocharov, E.V., and Bykov, V.A., Investigation of complex phytoadaptogen by HPLC, Probl. Biol., Med. Pharm. Chem., 2012, vol. 10, p. 52.

    Google Scholar 

  11. Kazeev, I.V., Bocharova, O.A., Shevchenko, V.E., Karpova, R.V., Bocharov, E.V., Uyutova, E.V., Sheychenko, O.P., Kucheryanu, V.G., and Baryshnikova, M.A., Tandem mass spectrometry in the technology of determining aralosides of phytoadaptogene compositions, Theor. Found. Chem. Eng., 2020, vol. 54, no. 6, pp. 1242–1246. https://doi.org/10.1134/S0040579520050334

    Article  CAS  Google Scholar 

  12. Mancuso, C. and Santangelo, R., Panax ginseng and Panax quinquefolius: From pharmacology to toxicology, Food Chem. Toxicol., 2017, vol. 107, part A, pp. 362–372. https://doi.org/10.1016/j.fct.2017.07.019

  13. Taira, S., Uematsu, K., Kaneko, D., and Katano, H., Mass spectrometry imaging: Applications to food science, Anal. Sci., 2014, vol. 30, no. 2, p. 197.

    Article  CAS  Google Scholar 

  14. Liu, Z., Li, Y., Li, X., Ruan, C.-C., Wang, L.-J., and Sun, G.-Z., The effects of dynamic changes of malonyl ginsenosides on evaluation and quality control of Panax ginseng C.A. Meyer, J. Pharm. Biomed. Anal., 2012, vols. 64–65, p. 56.

    Article  Google Scholar 

  15. Morinaga, O., Uto, T., Yuan, C.S., et al., Evaluation of a new eastern blotting technique for the analysis of ginsenoside Re in American ginseng berry pulp extracts, Fitoterapia, 2010, vol. 81, no. 4, p. 284.

    Article  CAS  Google Scholar 

  16. Zhao, Q., Zheng, X., Jiang, J., et al., Determination of ginsenoside Rg3 in human plasma and urine by high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2010, vol. 878, no. 24, p. 2266.

    Article  CAS  Google Scholar 

  17. Lee, S.M., Bae, B.-S., Park, H.-W., Ahn, N.-G., et al., Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition, J. Ginseng Res., 2015, vol. 39, no. 4, p. 384. https://doi.org/10.1016/j.jgr.2015.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lv, W.J., Liu, C., Li, Y.F., Chen, W.Q., et al., Systems pharmacology and microbiome dissection of Shen Ling Bai Zhu San reveal multiscale treatment strategy for IBD, Oxid. Med. Cell. Longevity, 2019, vol. 2019, article no. 8194804. https://doi.org/10.1155/2019/8194804

    Article  CAS  Google Scholar 

  19. Shi, Z.Y., Zeng, J.Z., and Wong, A.S.T., Chemical structures and pharmacological profiles of ginseng saponins, Molecules, 2019, vol. 24, no. 13, p. 2443. https://doi.org/10.3390/molecules24132443

    Article  CAS  PubMed Central  Google Scholar 

  20. Nguyen, N.H. and Nguyen, C.T., Pharmacological effects of ginseng on infectious diseases, Inflammopharmacology, 2019, vol. 27, no. 5, p. 871. https://doi.org/10.1007/s10787-019-00630-4

    Article  CAS  PubMed  Google Scholar 

  21. Bocharova, O.A., Bocharov, E.V., Karpova, R.V., Il’enko, V.A., Kazeev, I.V., and Baryshnikov, A.Yu., Integrins LFA-1 and Mac-1 and cytokines IL-6 and IL-10 in high-cancer mice under influence of phytoadaptogen, Bull. Exp. Biol. Med., 2014, vol. 157, no. 2, pp. 258–260. https://doi.org/10.1007/s10517-014-2539-4

    Article  CAS  PubMed  Google Scholar 

  22. Kim, D.H., Kim, D.W., Jung, B.H., Lee, J.H., Lee, H., Hwang, G.S., Kang, K.S., and Lee, J.W., Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress in neuronal cell, J. Ginseng Res., 2019, vol. 43, no. 2, p. 326. https://doi.org/10.1016/j.jgr.2018.12.002

    Article  PubMed  Google Scholar 

  23. Chen, J., Li, M., Qu, D., and Sun, Y., Neuroprotective effects of red ginseng saponins in scopolamine-treated rats and activity screening based on pharmacokinetics, Molecules, 2019, vol. 24, no. 11, p. 2136. https://doi.org/10.3390/molecules24112136

    Article  CAS  PubMed Central  Google Scholar 

  24. Alessio, N., Capasso, S., Di Bernardo, G., Cappabianca, S., Casale, F., Calarco, A., Cipollaro, M., Peluso, G., and Galderisi, U., Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: Hints for side effects following radiotherapy, Cell Cycle, 2017, vol. 16, no. 3, p. 251. https://doi.org/10.1080/15384101.2016.1175798

    Article  CAS  PubMed  Google Scholar 

  25. Tian, Y.Z., Liu, Y.P., Tian, S.C., Ge, S.Y., Wu, Y.J., and Zhang, B.L., Antitumor activity of ginsenoside Rd in gastric cancer via up-regulation of Caspase-3 and Caspase-9, Pharmazie, 2020, vol. 75, no. 4, p. 147. https://doi.org/10.1691/ph.2020.9931

    Article  CAS  PubMed  Google Scholar 

  26. Bocharova, O.A., Davydov, M.I., Klimenkov, A.A., Baryshnikov, A.Y., Karpova, R.V., Chulkova, S.V., Gorozhanskaya, E.G., and Ilyenko, V.A., Prospects of using phytoadaptogen in the treatment of diffuse stomach cancer, Bull. Exp. Biol. Med., 2009, vol. 148, no. 1, p. 82.

    Article  CAS  Google Scholar 

  27. Lee, D.G., Jang, S.I., Kim, Y.R., Yang, K.E., Yoon, S.J., Lee, Z.W., An, H.J., Jang, I.S., Choi, J.S., and Yoo, H.S., Anti-proliferative effects of ginsenosides extracted from mountain ginseng on lung cancer, Chin. J. Integr. Med., 2016, vol. 22, no. 5, p. 344. https://doi.org/10.1007/s11655-014-1789-8

    Article  CAS  PubMed  Google Scholar 

  28. Phi, L.T.H., Sari, I.N., Wijaya, Y.T., Kim, K.S., Park, K., Cho, A.E., and Kwon, H.Y., Ginsenoside Rd inhibits the metastasis of colorectal cancer via epidermal growth factor receptor signaling axis, IUBMB Life, 2019, vol. 71, no. 5, p. 601. https://doi.org/10.1002/iub.1984

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, X., Liu, H., Zhang, M., Li, C., and Li, G., Spectrum-effect relationship between UPLC fingerprints and anti-lung cancer effect of Panax ginseng, Phytochem. Anal., 2020, vol. 32, no. 3, p. 339. https://doi.org/10.1002/pca.2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, G.M., Lu, T.C., Sun, M.L., Jia, W.Y., Ji, X., and Luo, Y.G., Ginsenoside Rd inhibits glioblastoma cell proliferation by up-regulating the expression of miR-144-5p, Biol. Pharm. Bull., 2020, vol. 43, no. 10, p. 1534. https://doi.org/10.1248/bpb.b20-00338

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, E., Shi, H., Yang, L., Wu, X., and Wang, Z., Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth, Oncol. Rep., 2017, vol. 38, no. 1, p. 359. https://doi.org/10.3892/or.2017.5652

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, S.W., Xiao, S.Y., Wang, J., Hou, W., and Wang, Y.P., Inhibitory effects of ginsenoside Ro on the growth of B16F10 melanoma via its metabolites, Molecules, 2019, vol. 24, no. 16, p. 2985. https://doi.org/10.3390/molecules24162985

    Article  CAS  PubMed Central  Google Scholar 

  33. Chian, S., Zhao, Y., Xu, M., Yu, X., Ke, X., Gao, R., and Yin, L., Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway, Anti-Cancer Drugs, 2019, vol. 30, no. 8, p. 838. https://doi.org/10.1097/CAD.0000000000000781

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J., Wang, H., Mou, X., Luan, M., Zhang, X., He, X., Zhao, F., and Meng, Q., The advances on the protective effects of ginsenosides on myocardial ischemia and ischemia-reperfusion injury, Mini-Rev. Med. Chem., 2020, vol. 20, no. 16, p. 1610. https://doi.org/10.2174/1389557520666200619115444

    Article  CAS  PubMed  Google Scholar 

  35. Bai, L., Gao, J., Wei, F., Zhao, J., Wang, D., and Wei, J., Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes, Front. Pharmacol., 2018, vol. 9, p. 423. https://doi.org/10.3389/fphar.2018.00423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by grants from the Commission on Biomedical Innovations and Technologies of the Ministry of Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kazeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeev, I.V., Bocharova, O.A., Shevchenko, V.E. et al. Tandem Mass Spectrometry for the Analysis of Ginsenosides in a Phytoadaptogene Composition with Antitumor Properties. Theor Found Chem Eng 55, 1246–1257 (2021). https://doi.org/10.1134/S0040579521050225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521050225

Keywords:

Navigation