Skip to main content
Log in

Predicting the Electrochemical Pressure-Driven Membrane Separation of Industrial Solutions Using Friction Theory

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

An improved approach to determining the kinetic characteristics of electrochemical pressure-driven membrane separation of solutions has been proposed. It is based on the Spiegler friction theory and takes into account the combination of the effects of chemical and electrochemical potentials. The numerical values of the coefficients of friction fωm, f+m, and f in the solvent–membrane, solute (cations)–membrane and solute (cations)–solvent systems, respectively, were found using the example of the electrochemical pressure-driven membrane separation of aqueous solutions of CuSO4, Ni(NO3)2, and Fe(NO3)3 with concentrations of 1 × 10–2, 2 × 10–3, and 1 × 10–5 mol/L, respectively, using MGA-95 and MGA-100 membranes. Empirical coefficients to determine approximating curves were also determined. It was detected that the absolute values of these coefficients increased with increasing applied electric potential in almost all cases. An exception was mass transfer through the near-cathode membranes in the separation of the Fe(NO3)3 solution. The absolute values of the coefficients of friction were lowest in the separation of the CuSO4 solution and highest in the separation of the Fe(NO3)3 solution. The derived approximating dependences of the coefficients of friction on the electric potential were used to solve the inverse problem to find the retention factors and the outlet solvent flux. This can be efficiently used to predict the mass-transfer mechanism and calculate the characteristics of electromembrane units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pushkareva, T.P., Mathematical modeling as a necessary component of mathematical education, Sovrem. Probl. Nauki Obraz., 2014, no. 5, p. 796.

  2. Nikonenko, V.V., Pis’menskaya, N.D., Pourcelly, G., and Larchet, C., Modeling of transport phenomena in systems with ion-exchange membranes, Membrany i membrannye tekhnologii (Membranes and Membrane Technologies), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013, ch. 7.

    Google Scholar 

  3. Uzdenova, A.M., Modeling of electroconvection in membrane systems: Analysis of boundary conditions near the surface, Fundam. Issled., 2016, no. 12 (5), p. 1010.

  4. Zabolotskii, V.I., Bugakov, V.V., Sharafan, M.V., and Chermit, R.Kh., Transfer of electrolyte ions and water dissociation in anion-exchange membranes under intense current conditions, Russ. J. Electrochem., 2012, vol. 48, no. 6, pp. 650–659. https://doi.org/10.1134/S1023193512060158

    Article  CAS  Google Scholar 

  5. Miękisz, J., Gomułkiewicz, J., and Miękisz, S., Mathematical models of ion transport through cell membrane channels, Math. Appl., 2014, vol. 42, no. 1, p. 39. https://doi.org/10.14708/ma.v42i1.469

    Article  Google Scholar 

  6. Bhadauria, R. and Aluru, N.R., Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction, J. Chem. Phys., 2017, vol. 146, no. 18, p. 184106. https://doi.org/10.1063/1.4982731

    Article  CAS  Google Scholar 

  7. Zabolotskii, V.I., Lebedev, K.A., Urtenov, M.K., Nikonenko, V.V., Vasilenko, P.A., Shaposhnik, V.A., and Vasil’eva, V.I., A mathematical model describing voltammograms and transport numbers under intensive electrodialysis modes, Russ. J. Electrochem., 2013, vol. 49, no. 4, pp. 369–380. https://doi.org/10.1134/S1023193513040149

    Article  CAS  Google Scholar 

  8. Vorotyntsev, V.M., Drozdov, P.N., and Vorotyntsev, I.V., Mathematical modeling of the fine purification of gas mixtures by absorption pervaporation, Theor. Found. Chem. Eng., 2011, vol. 45, no. 2, pp. 180–184. https://doi.org/10.1134/S0040579511020163

    Article  CAS  Google Scholar 

  9. Migol, V.G., Khamizov, R.Kh., Askerniya, A.A., and Korabelnikov, V.M., Effect of precoat filtration and sorption on the mass transfer of silicon-containing compounds through reverse osmosis membranes: I. The model of the process, Sorbtsionnye Khromatogr. Protsessy, 2011, vol. 11, no. 6, pp. 865–872.

    CAS  Google Scholar 

  10. Zabolotskii, V.I., Lebedev, K.A., and Shel’deshov, N.V., Ion-transfer across a membrane in the presence of a preceding slow homogeneous chemical reaction in the diffusion layer, Russ. J. Electrochem., 2017, vol. 53, no. 9, pp. 966–979. https://doi.org/10.1134/S102319351709018X

    Article  CAS  Google Scholar 

  11. Antipov, S.T. and Klyuchnikov, A.I., Mathematical modeling of microfiltration in a rectangular channel, Theor. Found. Chem. Eng., 2019, vol. 53, no. 1, pp. 83–96. https://doi.org/10.1134/S0040579518060027

    Article  CAS  Google Scholar 

  12. Turaev, D.Yu., Use of membrane electrolysis for recovery of heavy metal ions, Russ. J. Appl. Chem., 2007, vol. 80, no. 1, pp. 83–86. https://doi.org/10.1134/S107042720701017X

    Article  CAS  Google Scholar 

  13. Vinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A.S., Statistical modelling of the interplay between solute shape and rejection in porous membranes, Sep. Purif. Technol., 2012, vol. 89, pp. 261–269. https://doi.org/10.1016/j.seppur.2012.01.032

    Article  CAS  Google Scholar 

  14. Kruglikov, S.S., Turaev, D.Yu., and Buzikova, A.M., Regeneration of a copper etching solution used in the manufacture of printed circuit boards by membrane electrolysis, Gal’vanotekh. Obrab. Poverkhn., 2009, vol. 17, no. 1, pp. 59–65.

    Google Scholar 

  15. Unije, U.V., Mücke, R., Baumann, S., and Guillon, O., Comparison of the simplification of the pressure profiles solving the binary friction model for asymmetric membranes, Membranes (Basel, Switz.), 2017, vol. 7, no. 4, p. 58. https://doi.org/10.3390/membranes7040058

  16. Metaiche, M. and Sanchez-Marcano, J., Theoretical considerations of pressure drop and mass transfer of gas flow in spiral wound membrane modules, Int. J. Membr. Sci. Technol., 2016, vol. 3, no. 1, pp. 12–21. https://doi.org/10.15379/2410-1869.2016.03.01.02

    Article  Google Scholar 

  17. Mulder, M., Basic Principles of Membrane Technology, Dordrecht: Kluwer Academic, 1996, 2nd ed.

    Book  Google Scholar 

  18. Zabolotskii, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

  19. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960.

    Google Scholar 

  20. Kesting, R.E., Synthetic Polymeric Membranes: A Structural Perspective, New York: Wiley-Interscience, 1985, 2nd ed.

    Google Scholar 

  21. Chalykh, A.E., Diffuziya v polimernykh sistemakh (Diffusion in Polymer Systems), Moscow: Khimiya, 1987.

  22. Nikolaev, N.I., Diffuziya v membranakh (Diffusion in Membranes), Moscow: Khimiya, 1980.

  23. Badessa, T.S., Transport of multiply charged ions through ion-exchange membranes in electrodialysis, Cand. Sci. (Chem.) Dissertation, Voronezh: Voronezh State Univ., 2015.

  24. Verezhnikov, V.N., Praktikum po kolloidnoi khimii poverkhnostno-aktivnykh veshchestv (Practical Work on the Colloid Chemistry of Surface-Active Substances), Voronezh: Voronezh. Gos. Univ., 1984.

  25. Lazarev, S.I., Kovalev, S.V., and Kazakov, V.G., Study of the kinetic and structural characteristics of electrobaromembrane purification of rinsing water from 2,2'-dibenzothiazolyl disulfide production, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, vol. 59, no. 2, pp. 34–40.

    Article  CAS  Google Scholar 

  26. Kovalev, S.V., Lazarev, S.I., Lazarev, K.S., and Popov, R.V., Flux and rejection coefficient for the MGA-95 membrane in the electrobaromembrane separation of an aqueous solution of zinc sulfate, Vestn. Tambov. Gos. Tekh. Univ., 2015, vol. 21, no. 1, p. 112.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20–38–90024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shestakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, K.V., Lazarev, S.I., Khokhlov, P.A. et al. Predicting the Electrochemical Pressure-Driven Membrane Separation of Industrial Solutions Using Friction Theory. Theor Found Chem Eng 55, 1221–1230 (2021). https://doi.org/10.1134/S0040579521050304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521050304

Keywords:

Navigation