Skip to main content
Log in

Extraction of Thiophene with Methyl Ether of Polyethylene Glycol 350

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The efficiency of polyethylene glycol methyl ether 350 (PEG ME-350) in the process of extracting thiophene from model motor fuel has been studied experimentally. The influence of the contact time of the phases, the composition of the extractant, the initial concentration of thiophene, and the volume ratio of the extractant and model fuel on the extraction of thiophene has been investigated. It is found that PEG ME-350 exhibits effective extraction properties with respect to thiophene, extracting it up to 81.58% in one extraction stage. The results can be further used in the development of the extraction purification of liquid motor fuels from sulfur-containing compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Solov’ev, V.O., Zakhodyaeva, Yu.A., and Voshkin, A.A., On the influence of additives of polymer, sodium nitrate, and 1-methyl-2-pyrrolidone on the extraction of thiophene in an n-hexan–water system, Theor. Found. Chem. Eng., 2020, vol. 54, pp. 894–899. https://doi.org/10.1134/S0040579520050437

    Article  Google Scholar 

  2. Ferreira, A.R., Freire, M.G., Ribeiro, J.C., Lopes, F.M., Crespo, J.G., and Coutinho, J.A., Ionic liquids for thiols desulfurization: Experimental liquid–liquid equilibrium and COSMO-RS description, Fuel, 2014, vol. 128, p. 314. https://doi.org/10.1016/j.fuel.2014.03.020

    Article  CAS  Google Scholar 

  3. Rodríguez-Cabo, B., Rodríguez, H., Rodil, E., Arce, A., and Soto, A., Extractive and oxidative-extractive desulfurization of fuels with ionic liquids, Fuel, 2014, vol. 117, p. 882. https://doi.org/10.1016/j.fuel.2013.10.012

    Article  CAS  Google Scholar 

  4. Rahma, W.S.A., Mjalli, F.S., Al-Wahaibi, T., and Al-Hashmi, A.A., Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions, Chem. Eng. Res. Des., 2017, vol. 120, p. 271. https://doi.org/10.1016/j.cherd.2017.02.025

    Article  CAS  Google Scholar 

  5. Zakhodyaeva, Yu.A., Solov’ev, V.O., Zinov’eva, I.V., Rudakov, D.G., Timoshenko, A.V., and Voshkin, A.A., Interphase distribution of thiophene, toluene, and o-xylene in the hexane–polymer–water extraction system, Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 550–555. https://doi.org/10.1134/S0040579519040298

    Article  CAS  Google Scholar 

  6. Gao, J., Meng, H., Lu, Y., Zhang, H., and Li, C., A carbonium pseudo ionic liquid with excellent extractive desulfurization performance, AIChE J., 2013, vol. 59, no. 3, p. 948. https://doi.org/10.1002/aic.13869

    Article  CAS  Google Scholar 

  7. Adžamić, T., Sertić-Bionda, K., and Zoretić, Z., Desulfurization of FCC gasoline by extraction with sulfolane and furfural, Nafta (Zagreb, Croatia), 2009, vol. 60, no. 9, pp. 485–490.

    Google Scholar 

  8. Ban, L.L., Liu, P., Ma, C.H., and Dai, B., Deep extractive desulfurization of diesel fuels by fecl3/ionic liquids, Chin. Chem. Lett., 2013, vol. 24, no. 8, p. 755. https://doi.org/10.1016/j.cclet.2013.04.031

    Article  CAS  Google Scholar 

  9. Kholkin, A.I., Belova, V.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Solvent extraction of weak acids in binary extractant systems, Sep. Sci. Technol., 2013, vol. 48, no. 9, pp. 1417–1425. https://doi.org/10.1080/01496395.2012.745000

    Article  CAS  Google Scholar 

  10. Zakhodyaeva, Yu.A., Voshkin, A.A., and Belova, V.V., Extraction of acetic acid by binary extractants, Russ. J. Inorg. Chem., 2013, vol. 58, no. 4, p. 481. https://doi.org/10.1134/S0036023613040207

    Article  CAS  Google Scholar 

  11. Belova, V.V., Kulichenkov, S.A., Voshkin, A.A., Khol’kin, A.I., Kuvaeva, Z.I., and Soldatov, V.S., Extraction of mineral acids with methyltrioctylammonium dinonylnaphthalenesulfonate, Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 460–464. https://doi.org/10.1134/S003602360703028X

    Article  Google Scholar 

  12. Yoshida, W. and Goto, M., Amide-functionalised phosphonium-based ionic liquids as ligands for rhodium (III) extraction, RSC Adv., 2021, vol. 11, no. 16, p. 9386. https://doi.org/10.1039/D1RA00489A

    Article  CAS  Google Scholar 

  13. Thasneema, K.K., Dipin, T., Thayyil, M.S., Sahu, P.K., Messali, M., Rosalin, T., and Hadda, T.B., Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids, J. Mol. Liq., 2021, vol. 323, article no. 114645. https://doi.org/10.1016/j.molliq.2020.114645

    Article  CAS  Google Scholar 

  14. Wang, Q., Zhang, T., Zhang, S., Fan, Y., and Chen, B., Extractive desulfurization of fuels using trialkylamine-based protic ionic liquids, Sep. Purif. Technol., 2020, vol. 231, article no. 115923. https://doi.org/10.1016/j.seppur.2019.115923

    Article  CAS  Google Scholar 

  15. Butt, H.S., Lethesh, K.C., and Fiksdahl, A., Fuel oil desulfurization with dual functionalized imidazolium based ionic liquids, Sep. Purif. Technol., 2020, vol. 248, article no. 116959. https://doi.org/10.1016/j.seppur.2020.116959

    Article  CAS  Google Scholar 

  16. Fang, L., Shen, Z., Shen, X., Kang, S., Song, H., and Liang, T., A study on thiophene removals from model oils with different molecular compositions using an inexpensive N-methylpyrrolidone-FeCl3 ionic liquid, J. Mol. Liq., 2021, vol. 333, article no. 115913. https://doi.org/10.1016/j.molliq.2021.115913

    Article  CAS  Google Scholar 

  17. Jin, N., Yue, J., Zhao, Y., Lu, H., and Wang, C., Experimental study and mass transfer modelling for extractive desulfurization of diesel with ionic liquid in microreactors, Chem. Eng. J., 2021, vol. 413, article no. 127419. https://doi.org/10.1016/j.cej.2020.127419

    Article  CAS  Google Scholar 

  18. Liu, F., Yu, J., Qazi, A.B., Zhang, L., and Liu, X., Metal-based ionic liquids in oxidative desulfurization: A critical review, Environ. Sci. Technol., 2021, vol. 55, no. 3, p. 1419. https://doi.org/10.1021/acs.est.0c05855

    Article  CAS  PubMed  Google Scholar 

  19. Lima, F., Dave, M., Silvestre, A.J., Branco, L.C., and Marrucho, I.M., Concurrent desulfurization and denitrogenation of fuels using deep eutectic solvents, ACS Sustainable Chem. Eng., 2019, vol. 7, no. 13, p. 11341. https://doi.org/10.1021/acssuschemeng.9b00877

    Article  CAS  Google Scholar 

  20. Makoś, P. and Boczkaj, G., Deep eutectic solvents based highly efficient extractive desulfurization of fuels–Eco-friendly approach, J. Mol. Liq., 2019, vol. 296, article no. 111916. https://doi.org/10.1016/j.molliq.2019.111916

    Article  CAS  Google Scholar 

  21. Rezaee, M., Feyzi, F., and Dehghani, M.R., Extractive desulfurization of dibenzothiophene from normal octane using deep eutectic solvents as extracting agent, J. Mol. Liq., 2021, vol. 333, article no. 115991. https://doi.org/10.1016/j.molliq.2021.115991

    Article  CAS  Google Scholar 

  22. Lima, F., Branco, L.C., Silvestre, A.J., and Marrucho, I.M., Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?, Fuel, 2021, vol. 293, article no. 120297. https://doi.org/10.1016/j.fuel.2021.120297

    Article  CAS  Google Scholar 

  23. Riveiro, E., González, B., and Domínguez, Á., Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents, Sep. Purif. Technol., 2020, vol. 241, article no. 116692. https://doi.org/10.1016/j.seppur.2020.116692

    Article  CAS  Google Scholar 

  24. Hanada, T. and Goto, M., Synergistic deep eutectic solvents for lithium extraction, ACS Sustainable Chem. Eng., 2021, vol. 9, no. 5, p. 2152. https://doi.org/10.1021/acssuschemeng.0c07606

    Article  CAS  Google Scholar 

  25. Zhu, Z., Lü, H., Zhang, M., and Yang, H., Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil, Phys. Chem. Chem. Phys., 2021, vol. 23, no. 2, p. 785. https://doi.org/10.1039/D0CP05153E

    Article  CAS  PubMed  Google Scholar 

  26. Warrag, S.E.E., Darwish, A.S., Abuhatab, F.O.S., Adeyemi, I.A., Kroon, M.C., and AlNashef, I.M., Combined extractive dearomatization, desulfurization, and denitrogenation of oil fuels using deep eutectic solvents: A parametric study, Ind. Eng. Chem. Res., 2020, vol. 59, no. 25, pp. 11723–11733. https://doi.org/10.1021/acs.iecr.0c01360

    Article  CAS  Google Scholar 

  27. Zinov’eva, I.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Extraction of lactic acid using the polyethylene glycol–sodium sulfate–water system, Theor. Found. Chem. Eng., 2021, vol. 55, no. 1, pp. 101–106. https://doi.org/10.1134/S0040579521010188

    Article  Google Scholar 

  28. Li, M., Yu, X., Zhou, C., Yagoub, A.E.A., Sun, Y., Yang, H., and Chen, L., Development of back-extraction recyclability of IL-ATPS for the efficient recovery of syringic and caffeic acid, J. Mol. Liq., 2021, vol. 328, article no. 115390. https://doi.org/10.1016/j.molliq.2021.115390

    Article  CAS  Google Scholar 

  29. Fedorova, M.I., Zakhodyaeva, Y.A., Baranchikov, A.E., Krenev, V.A., and Voshkin, A.A., Extraction reprocessing of Fe, Ni-containing parts of Ni–MH batteries, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, p. 266. https://doi.org/10.1134/S003602362102008X

    Article  CAS  Google Scholar 

  30. Huang, Y., Chen, D., Chen, S., Su, M., Chen, Y., and Yuvaraja, G., A green method for recovery of thallium and uranium from wastewater using polyethylene glycol and ammonium sulfate based on aqueous two-phase system, J. Cleaner Prod., 2021, vol. 297, article no. 126452. https://doi.org/10.1016/j.jclepro.2021.126452

    Article  CAS  Google Scholar 

  31. da Silveira Leite, D., de Assis, R.C., Domingues, J.T., Carvalho, P.L.G., de Castro, M.C.M., da Cruz, G.H., and Rodrigues, G.D., Selective recovery of zinc from mining sulfuric liquor employing aqueous two-phase systems, J. Water Process Eng., 2021, vol. 42, article no. 102138. https://doi.org/10.1016/j.jwpe.2021.102138

    Article  Google Scholar 

  32. Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol, Fuel, 2018, vol. 233, pp. 704–713. https://doi.org/10.1016/j.fuel.2018.06.101

    Article  CAS  Google Scholar 

  33. Meng, X., Zhou, P., Li, L., Liu, L., Guo, M., and Sun, T., A study of the desulfurization selectivity of a reductive and extractive desulfurization process with sodium borohydride in polyethylene glycol, Sci. Rep., 2020, vol. 10, no. 1, p. 1. https://doi.org/10.1038/s41598-020-67235-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-06070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Soloviev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, V.O., Solovieva, S.V., Zakhodyaeva, Y.A. et al. Extraction of Thiophene with Methyl Ether of Polyethylene Glycol 350. Theor Found Chem Eng 55, 1178–1184 (2021). https://doi.org/10.1134/S0040579521060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521060129

Keywords:

Navigation