Skip to main content
Log in

Change in the Direction of the Easy Magnetization Axis of Arrays of Segmented Ni/Cu Nanowires with Increasing Ni Segment Length

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Arrays of ordered segmented nanowires, which are ferromagnetic regions separated by non-magnetic inserts, are considered as a promising material for three-dimensional information storage systems. However, the presence of a large number of competing interactions significantly complicates the description of the magnetic behavior of such systems. In this paper, the effect of the segment length on the integral magnetic properties of Ni/Cu wires arrays is investigated. It is shown that the coercivity increases with an increase in the length of the magnetic segment for both the longitudinal and transverse directions of the long axis of the wires relative to the external magnetic field. A change in the direction of the easy magnetization axis was found with the ratio of the Ni segment length to the diameter in the range from 10 to 15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. O. Adeyeye and N. Singh, J. Phys. D 41, 153001 (2008).

    Article  ADS  Google Scholar 

  2. W. Rave, K. Fabian, and A. Hubert, J. Magn. Magn. Mater. 190, 332 (1998).

    Article  ADS  Google Scholar 

  3. J.-P. Adam, S. Rohart, J.-P. Jamet, J. Ferre, A. Mougin, R. Weil, H. Bernas, and G. Faini, Phys. Rev. B 85, 214417 (2012).

    Article  ADS  Google Scholar 

  4. A. Knittel, M. Franchin, Th. Fischbacher, F. Nasirpouri, S. J. Bending, and H. Fangohr, New J. Phys. 12, 113048 (2010).

    Article  ADS  Google Scholar 

  5. R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer, Nature (London, U.K.) 439, 303 (2006).

    Article  ADS  Google Scholar 

  6. S. Rajaram, D. K. Karunaratne, S. Sarkar, and S. Bhanja, IEEE Trans. Magn. 49, 3129 (2013).

    Article  ADS  Google Scholar 

  7. K. J. Merazzo, D. C. Leitao, E. Jimenez, J. P. Araujo, J. Camarero, R. P. del Real, A. Asenjo, and M. Vazquez, J. Phys. D 44, 505001 (2011).

    Article  Google Scholar 

  8. S. Michea, J. L. Palma, R. Lavin, J. Briones, J. Escrig, J. C. Denardin, and R. L. Rodriguez-Suarez, J. Phys. D 47, 335001 (2014).

    Article  ADS  Google Scholar 

  9. C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, M. Holler, Th. Huthwelker, A. Menzel, I. Vartiainen, E. Miiller, E. Kirk, S. Gliga, J. Raabe, and L. J. Heyderman, Phys. Rev. Lett. 114, 115501 (2015).

    Article  ADS  Google Scholar 

  10. M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, Nat. Mater. 4, 203 (2005).

    Article  ADS  Google Scholar 

  11. R. Streubel, V. P. Kravchuk, D. D. Sheka, D. Makarov, F. Kronast, O. G. Schmidt, and Yu. Gaididei, Appl. Phys. Lett. 101, 132419 (2012).

    Article  ADS  Google Scholar 

  12. A. Fernandez-Pacheco, L. Serrano-Ramon, J. M. Michalik, M. R. Ibarra, J. M. de Teresa, L. O’Brien, D. Petit, D. J. Lee, and R. P. Cowburn, Sci. Rep. 3, 1492 (2013).

    Article  ADS  Google Scholar 

  13. A. May, M. Hunt, A. van den Berg, A. Hejazi, and S. Ladak, Commun. Phys. 2, 1 (2019).

    Article  Google Scholar 

  14. K. S. Napolskii, I. A. Sapoletova, D. F. Gorozhankin, A. A. Eliseev, D. Yu. Chernyshov, D. V. Byelov, N. A. Grigoryeva, A. A. Mistonov, W. G. Bouwman, and K. O. Kvashnina, Langmuir 26, 2346 (2010).

    Article  Google Scholar 

  15. I. S. Dubitskii, N. A. Grigoryeva, A. A. Mistonov, G. A. Valkovskiy, N. A. Sapoletova, and S. V. Grigoriev, Phys. Solid State 59, 2464 (2017).

    Article  ADS  Google Scholar 

  16. I. S. Dubitskiy, A. V. Syromyatnikov, N. A. Grigoryeva, A. A. Mistonov, A. Sapoletova, and S. V. Grigoriev, J. Magn. Magn. Mater. 441, 609 (2017).

    Article  ADS  Google Scholar 

  17. A. A. Mistonov, I. S. Dubitskiy, I. S. Shishkin, N. A. Grigoryeva, A. Heinemann, N. A. Sapoletova, G. A. Valkovskiy, and S. V. Grigoriev, J. Magn. Magn. Mater. 477, 99 (2019).

    Article  ADS  Google Scholar 

  18. M. Okuda, T. Schwarze, J. C. Eloi, S. E. W. Jones, P. J. Heard, A. Sarna, E. Ahmad, V. V. Kruglyak, D. Grundler, and W. Schwarzacher, Nanotechnology 28, 155301 (2017).

    Article  ADS  Google Scholar 

  19. Ju. Brunner, I. A. Baburin, S. Sturm, K. Kvashnina, A. Rossberg, T. Pietsch, S. Andreev, E. Sturm, and H. Colfen, Adv. Mater. Interfaces 4, 1600431 (2017).

    Article  Google Scholar 

  20. Ch. Phatak, Yu. Liu, E. B. Gulsoy, D. Schmidt, E. Franke-Schubert, and A. Petford-Long, Nano Lett. 14, 759 (2014).

    Article  ADS  Google Scholar 

  21. H. Masuda and K. Fukuda, Science (Washington, DC, U. S.) 268, 1466 (1995).

    Article  ADS  Google Scholar 

  22. M. Vazquez, Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications (Woodhead, Cambridge, 2020).

    Google Scholar 

  23. M. Stano and O. Fruchart, Handbook Magn. Mater. 27, 155 (2018).

    Google Scholar 

  24. P. W. Egolf, N. Shamsudhin, S. Pane, D. Vuarnoz, J. Pokki, A. G. Pawlowski, P. Tsague, B. de Marco, W. Bovy, S. Tucev, M. H. D. Ansari, and B. J. Nelson, J. Appl. Phys. 120, 064304 (2016).

    Article  ADS  Google Scholar 

  25. S. Leulmi, X. Chauchet, M. Morcrette, G. Ortiz, H. Joisten, Ph. Sabon, Th. Livache, Ya. Hou, M. Carriere, St. Lequien, and B. Dieny, Nanoscale 7, 15904 (2015).

    Article  ADS  Google Scholar 

  26. J. A. Otalora, M. Yan, H. Schultheiss, R. Hertel, and A. Kakay, Phys. Rev. B 95, 184415 (2017).

    Article  ADS  Google Scholar 

  27. Zh. Li, M. Wang, Ya. Nie, D. Wang, Q. Xia, W. Tang, Zh. Zeng, and G. Guo, J. Magn. Magn. Mater. 414, 49 (2016).

    Article  ADS  Google Scholar 

  28. K. Gandha, K. Elkins, N. Poudyal, X. Liu, and J. P. Liu, Sci. Rep. 4, 1 (2014).

    Article  Google Scholar 

  29. A. Winkler, M. S. Menzel, R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt, and B. Bochner, J. Appl. Phys. 99, 104905 (2006).

    Article  ADS  Google Scholar 

  30. N. Maleak, P. Potpattanapol, N. N. Bao, J. Ding, W. Wongkokuo, I. M. Tang, and S. Thongmee, J. Magn. Magn. Mater. 354, 262 (2014).

    Article  ADS  Google Scholar 

  31. C. Bran, E. Berganza, J. A. Fernandez-Roldan, E. M. Palmero, J. Meier, E. Calle, M. Jaafar, M. Foerster, L. Aballe, and R. A. Fraile, ACS Nano 12, 5932 (2018).

    Article  Google Scholar 

  32. Ph. Sergelius, J. H. Lee, O. Fruchart, M. S. Salem, S. Allende, R. A. Escobar, J. Gooth, R. Zierold, J.‑Ch. Toussaint, S. Schneider, D. Pohl, B. Rellinghaus, S. Martin, J. Garcia, H. Reith, et al., Nanotechnology 28, 065709 (2017).

    Article  ADS  Google Scholar 

  33. A. J. Grutter, K. L. Krycka, E. V. Tartakovskaya, J. A. Borchers, K. S. M. Reddy, E. Ortega, A. Ponce, and B. J. H. Stadler, ACS Nano 11, 8311 (2017).

    Article  Google Scholar 

  34. D. Wolf, N. Biziere, S. Sturm, D. Reyes, T. Wade, T. Niermann, J. Krehl, B. Warot-Fonrose, B. Blichner, and E. Snoeck, Commun. Phys. 2, 87 (2019).

    Article  Google Scholar 

  35. S. Moraes, D. Navas, F. Beron, M. P. Proenca, K. R. Pirota, C. T. Sousa, and J. P. Araujo, Nanomaterials 8, 490 (2018).

    Article  Google Scholar 

  36. A. Nunez, L. Perez, M. Abuin, J. P. Araujo, and M. P. Proenca, J. Phys. D 50, 155003 (2017).

    Article  ADS  Google Scholar 

  37. M. Susano, M. P. Proenca, S. Moraes, C. T. Sousa, and J. P. Araujo, Nanotechnology 27, 335301 (2016).

    Article  Google Scholar 

  38. A. D. Davydov and V. M. Volgin, Russ. J. Electrochem. 52, 806 (2016).

    Article  Google Scholar 

  39. A. H. A. Elmekawy, E. G. Iashina, I. S. Dubitskiy, S. V. Sotnichuk, I. V. Boshev, K. S. Napolskii, D. Menzel, and A. A. Mistonov, Mater. Today Commun. 25, 101609 (2020).

    Article  Google Scholar 

  40. I. S. Dubitskiy, A. H. A. Elmekawy, E. G. Iashina, S. V. Sotnichuk, K. S. Napolskii, D. Menzel, and A. A. Mistonov, J. Supercond. Nov. Magn. 34, 539 (2021).

    Article  Google Scholar 

  41. K. S. Napolskii, I. V. Roslyakov, A. A. Eliseev, D. I. Petukhov, A. V. Lukashin, S. F. Chen, C. P. Liu, and G. A. Tsirlina, Electrochim. Acta 56, 2378 (2011).

    Article  Google Scholar 

  42. K. S. Napol’skii, I. V. Roslyakov, A. A. Eliseev, A. V. Lukashin, and Yu. D. Tret’yakov, Al’tern. Energet. Ekol., No. 8, 79 (2010).

  43. I. V. Roslyakov, D. S. Koshkodaev, A. A. Eliseev, D. Hermida-Merino, V. K. Ivanov, A. V. Petukhov, and K. S. Napolskii, J. Phys. Chem. C 121, 27511 (2017).

    Article  Google Scholar 

  44. S. L. Lim, F. Xu, N. N. Phuoc, and C. K. Ong, J. Alloys Compd. 505, 609 (2010).

    Article  Google Scholar 

  45. P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M. Novak, and W. Nunes, Phys. Rev. B 64, 144420 (2001).

    Article  ADS  Google Scholar 

  46. J. Escrig, R. Lavin, J. Palma, J. Denardin, D. Altbir, A. Cortes, and H. Gomez, Nanotechnology 19, 075713 (2008).

    Article  ADS  Google Scholar 

  47. R. Lavin, J. Denardin, J. Escrig, D. Altbir, A. Cortes, and H. Gomez, J. Appl. Phys. 106, 103903 (2009).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the management of the Saint Petersburg University Research Park and the employee of the Nanotechnology Research Center (NTRC) (http://nano.spbu.ru) V. D. Kalganov for his inestimable contribution of obtaining experimental data. In addition, the authors are grateful to the developers of the Magic Plot software (https://magicplot.com/), in which most of the graphs are constructed. This work was supported by the Interdisciplinary Scientific and Educational School of Moscow University “The Future of the Planet and Global Environmental Changes.”

Funding

This work was supported by the Russian Science Foundation (project no. 18-72-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Dubitskiy.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistonov, A.A., Dubitskiy, I.S., Elmekawy, A.H. et al. Change in the Direction of the Easy Magnetization Axis of Arrays of Segmented Ni/Cu Nanowires with Increasing Ni Segment Length. Phys. Solid State 63, 1058–1064 (2021). https://doi.org/10.1134/S1063783421070179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070179

Keywords:

Navigation