Skip to main content
Log in

Early manifestation of aging-related vascular dysfunction in human penile vasculature—A potential explanation for the role of erectile dysfunction as a harbinger of systemic vascular disease

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Advanced age is related to functional alterations of human vasculature, but erectile dysfunction precedes systemic manifestations of vascular disease. The current study aimed to simultaneously evaluate the influence of aging on vascular function (relaxation and contraction responses) in systemic human vascular territories: aorta (HA) and resistance mesenteric arteries (HMA) and human corpus cavernosum (HCC) and penile resistance arteries (HPRA). Associations of oxidative stress and inflammation circulating biomarkers with age and functional responses were also determined. Vascular specimens were obtained from 76 organ donors (age range 18–87). Four age-groups were established: < 40, 40–55, 56–65 and > 65 years old. Increasing age was associated with a decline in endothelium-dependent relaxation induced by BK in HMA (r = -0.597, p = 0.0001), or by ACh in HCC (r = -0.505, p = 0.0022), and HPRA (r = -0.601, p = 0.0012). Significant impairment was detected at > 65 years old in HMA but earlier in penile vasculature (> 55 years old). Age-related reduction to H2O2-vasodilatory response started before in HCC (56–65 years old) than in HA (> 65 years old). In contrast to relaxation responses, aging-related hypercontractility to adrenergic stimulation was homogeneous: contractions significantly increased in subjects > 55 years old in all tested vessels. Although not significantly age related, circulating levels of ADMA (r = -0.681, p = 0.0052) and TNF-α (r = -0.537, p = 0.0385) were negatively correlated with endothelial vasodilation in HMA but not in HCC or HPRA. Penile vasculature exhibits an early impairment of endothelium-dependent and H2O2-induced vasodilations when compared to mesenteric microcirculation and aorta. Therefore, functional susceptibility of penile vasculature to the aging process may account for anticipation of erectile dysfunction to systemic manifestations of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available upon request to corresponding author.

Code availability

Not applicable.

References

  1. United Nations. World Population Ageing 2020. Highlights. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd-2020_world_population_ageing_highlights.pdf.

  2. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56–528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  3. Lakatta EG. So! What’s aging? Is cardiovascular aging a disease? J Mol Cell Cardiol. 2015;83:1–13. https://doi.org/10.1016/j.yjmcc.2015.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int. 2014;2014:615312. https://doi.org/10.1155/2014/615312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schutzer WE, Mader SL. Biochemical and molecular aspects of vascular adrenergic regulation of blood pressure in the elderly. Int J Hypertens. 2012;2012:915057. https://doi.org/10.1155/2012/915057.

    Article  CAS  PubMed  Google Scholar 

  6. El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013;65:380–401. https://doi.org/10.1016/j.freeradbiomed.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  7. Tesauro M, Mauriello A, Rovella V, et al. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med. 2017;281:471–82. https://doi.org/10.1111/joim.12605.

    Article  CAS  PubMed  Google Scholar 

  8. Virdis A, Ghiadoni L, Giannarelli C, Taddei S. Endothelial dysfunction and vascular disease in later life. Maturitas. 2010;67:20–4. https://doi.org/10.1016/j.maturitas.2010.04.006.

    Article  CAS  PubMed  Google Scholar 

  9. El Assar M, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer CF, Rodríguez-Mañas L. Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol. 2012;3:132. https://doi.org/10.3389/fphys.2012.00132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science. 2017;357:eaal2379. https://doi.org/10.1126/science.aal2379.

  11. Shimokawa H, Godo S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin Pharmacol Toxicol. 2020;127:92–101. https://doi.org/10.1111/bcpt.13377.

    Article  CAS  PubMed  Google Scholar 

  12. El Assar M, Fernandez A, Sanchez-Ferrer A, Angulo J, Rodríguez-Mañas L. Multivessel analysis of progressive vascular aging in the rat: Asynchronous vulnerability among vascular territories. Mech Ageing Dev. 2018;173:39–49. https://doi.org/10.1016/j.mad.2018.03.012.

    Article  PubMed  Google Scholar 

  13. Fisher JS, Rezk A, Nwefo E, Masterson J, Ramasamy R. Sexual health in the elderly population. Curr Sex Health Rep. 2020;12:381–8. https://doi.org/10.1007/s11930-020-00278-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jackson SE, Yang L, Koyanagi A, Stubbs B, Veronese N, Smith L. Declines in sexual activity and function predict incident health problems in older adults: prospective findings from the English Longitudinal Study of Ageing. Arch Sex Behav. 2020;49:929–40. https://doi.org/10.1007/s10508-019-1443-4.

    Article  PubMed  Google Scholar 

  15. Chung HS, Shin MH, Park K. Association between hand-grip strength and erectile dysfunction in older men. Aging Male. 2018;21:225–30. https://doi.org/10.1080/13685538.2017.1412423.

    Article  PubMed  Google Scholar 

  16. Park H, Jang IY, Han M, Lee H, Jung HW, Lee E, Kim DH. Sarcopenia is associated with severe erectile dysfunction in older adults: a population-based cohort study. Korean J Intern Med. 2020;35:1245–53. https://doi.org/10.3904/kjim.2019.148.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hsu B, Hirani V, Naganathan V, Blyth FM, Le Couteur DG, Seibel MJ, Waite LM, Handelsman DJ, Cumming RG. Sexual Function and Mortality in Older Men: The Concord Health and Ageing in Men Project. J Gerontol A Biol Sci Med Sci. 2017;72:520–7. https://doi.org/10.1093/gerona/glw101.

    Article  PubMed  Google Scholar 

  18. Kessler A, Sollie S, Challacombe B, Briggs K, Van Hemelrijck M. The global prevalence of erectile dysfunction: a review. BJU Int. 2019; Online ahead of print. https://doi.org/10.1111/bju.14813

  19. Stein RA. Endothelial dysfunction, erectile dysfunction, and coronary heart disease: the pathophysiologic and clinical linkage. Rev Urol. 2003;5(Suppl 7):S21-7.

    PubMed  PubMed Central  Google Scholar 

  20. Kovács I, Császár A, Toth J, Siller G, Farkas A, Tarján J, Horváth J, Koller A. Correlation between flow-mediated dilation and erectile dysfunction. J Cardiovasc Pharmacol. 2008;51(2):148–53. https://doi.org/10.1097/FJC.0b013e31815e8514.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrini MG, González-Cadavid NF, Rajfer J. Aging related erectile dysfunction – potential mechanism to halt or delay its onset. Transl Androl Urol. 2017;6:20–7. https://doi.org/10.21037/tau.2016.11.18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Djordjevic D, Vukovic I, Milenkovic Petronic D, Radovanovic G, Seferovic J, Micic S, Kisic TD. Erectile dysfunction as a predictor of vascular age. Andrology. 2015;3:1125–31. https://doi.org/10.1111/andr.12105.

    Article  CAS  PubMed  Google Scholar 

  23. Diaconu CC, Manea M, Marcu DR, Socea B, Spinu AD, Bratu OG. The erectile dysfunction as a marker of cardiovascular disease: a review. Acta Cardiol. 2020;75:286–92. https://doi.org/10.1080/00015385.2019.1590498.

    Article  PubMed  Google Scholar 

  24. Foresta C, Ferlin A, Lenzi A, Montorsi P, Italian Study Group on Cardiometabolic Andrology. The great opportunity of the andrological patient: cardiovascular and metabolic risk assessment and prevention. Andrology. 2017;5:408–13. https://doi.org/10.1111/andr.12342.

    Article  CAS  PubMed  Google Scholar 

  25. Jackson G. Prevention of cardiovascular disease by the early identification of erectile dysfunction. Int J Impot Res. 2008;20(Suppl 2):S9-14. https://doi.org/10.1038/ijir.2008.47.

    Article  PubMed  Google Scholar 

  26. Montorsi P, Ravagnani PM, Galli S, et al. The artery size hypothesis: a macrovascular link between erectile dysfunction and coronary artery disease. Am J Cardiol. 2005;96:19M-23M. https://doi.org/10.1016/j.amjcard.2005.07.006.

    Article  PubMed  Google Scholar 

  27. Yilmaz H, Gultekin MH, Yalcin A. Erectile dysfunction and retinal microvascular network: an optical coherence tomography angiography study. Int J Impot Res. 2021;33:318–24. https://doi.org/10.1038/s41443-020-0289-6.

    Article  CAS  PubMed  Google Scholar 

  28. Kumagai H, Yoshikawa T, Myoenzono K, Kosaki K, Akazawa N, Asako ZM, Tsujimoto T, Kidokoro T, Tanaka K, Maeda S. Sexual Function Is an Indicator of Central Arterial Stiffness and Arterial Stiffness Gradient in Japanese Adult Men. J Am Heart Assoc. 2018;7:e007964. https://doi.org/10.1161/JAHA.117.007964.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Angulo J, González-Corrochano R, Cuevas P, Fernández A, La Fuente JM, Rolo F, Allona A, de Sáenz Tejada I. Diabetes exacerbates the functional deficiency of NO/cGMP pathway associated with erectile dysfunction in human corpus cavernosum and penile arteries. J Sex Med. 2010;7:758–68. https://doi.org/10.1111/j.1743-6109.2009.01587.x.

    Article  CAS  PubMed  Google Scholar 

  30. Angulo J, El Assar M, Sevilleja-Ortiz A, et al. Short-term pharmacological activation of Nrf2 ameliorates vascular dysfunction in aged rats and in pathological human vasculature. A potential target for therapeutic intervention. Redox Biol. 2019;26: 101271. https://doi.org/10.1016/j.redox.2019.101271.

  31. Sevilleja-Ortiz A, El Assar M, García-Rojo E, Romero-Otero J, García-Gómez B, Fernández A, Medina-Polo J, La Fuente JM, Rodríguez-Mañas L, Angulo J. Enhanced Contribution of Orai Channels to Contractility of Human Penile Smooth Muscle in Erectile Dysfunction. J Sex Med. 2020;17:881–91. https://doi.org/10.1016/j.jsxm.2020.02.020.

    Article  CAS  PubMed  Google Scholar 

  32. Angulo J, Vallejo S, El Assar M, Garcia-Septiem J, Sanchez-Ferrer CF, Rodríguez-Mañas L. Age-related differences in the effects of alpha and gamma peroxisome proliferator-activated receptor subtype agonists on endothelial vasodilation in human microvessels. Exp Gerontol. 2012;47:734–40. https://doi.org/10.1016/j.exger.2012.06.014.

    Article  CAS  PubMed  Google Scholar 

  33. El Assar M, Angulo J, Santos-Ruiz M, et al. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. J Physiol. 2016;594:3045–60. https://doi.org/10.1113/JP271836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zanetti M, Gortan Cappellari G, Burekovic I, Barazzoni R, Stebel M, Guarnieri G. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol. 2010;2010(45):848–55. https://doi.org/10.1016/j.exger.2010.07.002.

    Article  CAS  Google Scholar 

  35. Silva FH, Monica FZ, Bau FR, et al. Superoxide anion production by NADPH oxidase plays a major role in erectile dysfunction in middle-aged rats: prevention by antioxidant therapy. J Sex Med. 2013;10:960–71. https://doi.org/10.1111/jsm.12063.

    Article  CAS  PubMed  Google Scholar 

  36. Dalaklioglu S, Sahin P, Tasatargil A, Celik-Ozenci C. Pravastatin improves the impaired nitric oxide-mediated neurogenic and endothelium-dependent relaxation of corpus cavernosum in aged rats. Aging Male. 2014;2014(17):259–66. https://doi.org/10.3109/13685538.2013.832194.

    Article  CAS  Google Scholar 

  37. Ma L, Wang K, Shang J, et al. Anti-peroxynitrite treatment ameliorated vasorelaxation of resistance arteries in aging rats: involvement with NO-sGC-cGKs pathway. PLoS ONE. 2014;9:e104788. https://doi.org/10.1371/journal.pone.0104788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodríguez-Mañas L, El-Assar M, Vallejo S, et al. Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell. 2009;8:226–38. https://doi.org/10.1111/j.1474-9726.2009.00466.x.

    Article  CAS  PubMed  Google Scholar 

  39. Walker AE, Kaplon RE, Pierce GL, Nowlan MJ, Seals DR. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor kappaB. Clin Sci (Lond). 2014;127:645–54. https://doi.org/10.1042/CS20140030.

    Article  CAS  Google Scholar 

  40. Echeverri Tirado LC, Ferrer JE, Herrera AM. Aging and Erectile Dysfunction. Sex Med Rev. 2016;4:63–73. https://doi.org/10.1016/j.sxmr.2015.10.011.

    Article  PubMed  Google Scholar 

  41. Kaya E, Sikka SC, Kadowitz PJ, Gur S. Aging and sexual health: getting to the problem. Aging Male. 2017;20:65–80. https://doi.org/10.1080/13685538.2017.1295435.

    Article  PubMed  Google Scholar 

  42. Gratzke C, Angulo J, Chitaley K, Dai YT, Kim NN, Paick JS, Simonsen U, Uckert S, Wespes E, Andersson KE, Lue TF, Stief CG. Anatomy, physiology, and pathophysiology of erectile dysfunction. J Sex Med. 2010;7:445–75. https://doi.org/10.1111/j.1743-6109.2009.01624.x.

    Article  CAS  PubMed  Google Scholar 

  43. Martínez-Salamanca JI, La Fuente JM, Fernández A, Martínez-Salamanca E, Pepe-Cardoso AJ, Carballido J, Angulo J. Nitrergic function is lost but endothelial function is preserved in the corpus cavernosum and penile resistance arteries of men after radical prostatectomy. J Sex Med. 2015;12:590–9. https://doi.org/10.1111/jsm.12801.

    Article  PubMed  Google Scholar 

  44. Gandaglia G, Briganti A, Jackson G, Kloner RA, Montorsi F, Montorsi P, Vlachopoulos C. A systematic review of the association between erectile dysfunction and cardiovascular disease. Eur Urol. 2014;65:968–78. https://doi.org/10.1016/j.eururo.2013.08.023.

    Article  PubMed  Google Scholar 

  45. Wolin MS. Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol. 2009;296:H539-549. https://doi.org/10.1152/ajpheart.01167.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–83. https://doi.org/10.1038/s41580-020-0230-3.

    Article  CAS  PubMed  Google Scholar 

  47. Pourmahram GE, Snetkov VA, Shaifta Y, Drndarski S, Knock GA, Aaronson PI, Ward JP. Constriction of pulmonary artery by peroxide: role of Ca2+ release and PKC. Free Radic Biol Med. 2008;45(10):1468–76. https://doi.org/10.1016/j.freeradbiomed.2008.08.020.

    Article  CAS  PubMed  Google Scholar 

  48. García-Redondo AB, Briones AM, Martínez-Revelles S, Palao T, Vila L, Alonso MJ, Salaices M. c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension: role of TXA2, NAD(P)H oxidase and mitochondria. J Hypertens. 2015;33(1):77–87. https://doi.org/10.1097/HJH.0000000000000383.

    Article  CAS  PubMed  Google Scholar 

  49. Ardanaz N, Beierwaltes WH, Pagano PJ. Distinct hydrogen peroxide-induced constriction in multiple mouse arteries: potential influence of vascular polarization. Pharmacol Rep. 2008;60(1):61–7.

    CAS  PubMed  Google Scholar 

  50. Gao YJ, Hirota S, Zhang DW, Janssen LJ, Lee RM. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol. 2003;138:1085–92. https://doi.org/10.1038/sj.bjp.0705147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cseko C, Bagi Z, Koller A. Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways. J Appl Physiol (1985). 2004;97(3):1130–7. https://doi.org/10.1152/japplphysiol.00106.2004.

    Article  CAS  Google Scholar 

  52. Park SW, Noh HJ, Sung DJ. Hydrogen peroxide induces vasorelaxation by enhancing 4-aminopyridine-sensitive Kv currents through S-glutathionylation. Pflugers Arch. 2015;467:285–97. https://doi.org/10.1007/s00424-014-1513-3.

    Article  CAS  PubMed  Google Scholar 

  53. Breton-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2014;2:529–34. https://doi.org/10.1016/j.redox.2014.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD. H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res. 2011;108(5):566–73. https://doi.org/10.1161/CIRCRESAHA.110.237636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD. H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res. 2012;110(3):471–80. https://doi.org/10.1161/CIRCRESAHA.111.258871.

    Article  CAS  PubMed  Google Scholar 

  56. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. https://doi.org/10.1111/apha.12646.

    Article  CAS  PubMed  Google Scholar 

  57. Jackson MJ, McArdle A. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol. 2011;589:2139–45. https://doi.org/10.1113/jphysiol.2011.206623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackson MJ, McArdle A. Role of reactive oxygen species in age-related neuromuscular deficits. J Physiol. 2016;594:1979–88. https://doi.org/10.1113/JP270564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, Mitchell M, Galdieri R, Sorokin A, Gutterman DD. Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol. 2017;112(1):5. https://doi.org/10.1007/s00395-016-0594-x.

    Article  CAS  PubMed  Google Scholar 

  60. Silva FH, Lanaro C, Leiria LO, et al. Oxidative stress associated with middle aging leads to sympathetic hyperactivity and downregulation of soluble guanylyl cyclase in corpus cavernosum. Am J Physiol Heart Circ Physiol. 2014;307:H1393-1400. https://doi.org/10.1152/ajpheart.00708.2013.

    Article  CAS  PubMed  Google Scholar 

  61. Christ GJ, Schwartz CB, Stone BA, et al. Kinetic characteristics of alpha 1-adrenergic contractions in human corpus cavernosum smooth muscle. Am J Physiol. 1992;263:H15-19. https://doi.org/10.1152/ajpheart.1992.263.1.H15.

    Article  CAS  PubMed  Google Scholar 

  62. Christ GJ, Stone B, Melman A. Age-dependent alterations in the efficacy of phenylephrine-induced contractions in vascular smooth muscle isolated from the corpus cavernosum of impotent men. Can J Physiol Pharmacol. 1991;69:909–13. https://doi.org/10.1139/y91-138.

    Article  CAS  PubMed  Google Scholar 

  63. Rudner XL, Berkowitz DE, Booth JV, et al. Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation. 1999;100:2336–43. https://doi.org/10.1161/01.cir.100.23.2336.

    Article  CAS  PubMed  Google Scholar 

  64. Alonso-Bouzon C, Carcaillon L, Garcia-Garcia FJ, Amor-Andres MS, El Assar M, Rodriguez-Manas L. Association between endothelial dysfunction and frailty: the Toledo Study for Healthy Aging. Age (Dordr). 2014;36:495–505. https://doi.org/10.1007/s11357-013-9576-1.

    Article  CAS  Google Scholar 

  65. Kielstein JT, Bode-Boger SM, Frolich JC, Ritz E, Haller H, Fliser D. Asymmetric dimethylarginine, blood pressure, and renal perfusion in elderly subjects. Circulation. 2003;2003(107):1891–5. https://doi.org/10.1161/01.CIR.0000060496.23144.A7.

    Article  Google Scholar 

  66. Murdaca G, Spanò F, Cagnati P, Puppo F. Free radicals and endothelial dysfunction: potential positive effects of TNF-alpha inhibitors. Redox Rep. 2013;18:95–9. https://doi.org/10.1179/1351000213Y.0000000046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the altruistic contribution of donors and their relatives as well as all the personnel involved in organ donation and transplantation teams at Hospital Universitario Doce de Octubre, Madrid, Spain, and at the Hospital Geral de Santo Antonio, Porto, Portugal, for making this study possible.

Funding

The research leading to these results has received funding from the Ministry of Economy and Competitiveness and co-financed by FEDER funds (Instituto de Salud Carlos III, PI15/00674, PI15/01160, PI15/01969, PI20/00977 and CIBERFES (CB16/10/00464), Spanish Government.

Author information

Authors and Affiliations

Authors

Contributions

MEA, JA, JRO and LRM participated in conceptualization and design of the study; MEA, JA, EGR, ASO, BGG, AF, ASF, JMLF and LRM performed data acquisition analysis and interpretation; MEA, JA, and LRM wrote the original draft of the manuscript; all authors reviewed, edited, and approved the final version of the manuscript.

Corresponding author

Correspondence to Leocadio Rodríguez-Mañas.

Ethics declarations

Ethics approval

The study protocols were approved by the Ethics Committees of the Hospital Universitario de Getafe, Getafe, Spain (Ethics Approval procedure A06/15, April 30th, 2015), the Hospital Universitario Doce de Octubre, Madrid, Spain (Ethics Approval procedure 16/045, February 25th, 2016), the Hospital Universitario Ramón y Cajal, Madrid, Spain (Ethics Approval procedure 363–15, March 3rd, 2016), and the Hospital Geral de Santo Antonio, Porto, Portugal (210–15 (174-DEFI/156-CES, May 27th, 2016).

Consent to participate

All participants gave written informed consent to participate.

Conflicts of interest/Competing interests

Authors declare that they have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assar, M.E., Angulo, J., García-Rojo, E. et al. Early manifestation of aging-related vascular dysfunction in human penile vasculature—A potential explanation for the role of erectile dysfunction as a harbinger of systemic vascular disease. GeroScience 44, 485–501 (2022). https://doi.org/10.1007/s11357-021-00507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00507-x

Keywords

Navigation