Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Approaches and Success of Liposome-Based Nano Drug Carriers for the Treatment of Brain Tumor

Author(s): Tapan Kumar Shaw* and Paramita Paul

Volume 19, Issue 8, 2022

Published on: 14 February, 2022

Page: [815 - 829] Pages: 15

DOI: 10.2174/1567201818666211213102308

Price: $65

Abstract

Brain tumors are nothing but a collection of neoplasms that originate either from areas within the brain or from systemic metastasized tumors of other organs spread to the brain. It is a leading cause of death worldwide. The presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and some other factors may limit the entry of many potential therapeutics into the brain tissues in the tumor area at the therapeutic concentration required for satisfying effectiveness. Liposomes play an active role in delivering many drugs through BBB into the tumor due to their nanosize and physiological compatibility. The surface of the liposomes can be modified with various ligands that are very specific to the numerous receptors overexpressed onto the BBB as well as onto the diseased tumor surface site (i.e., BBTB) to deliver selective drugs into the tumor site. Further, this colloidal carrier can encapsulate both lipophilic and hydrophilic drugs due to its unique structure. Moreover, the enhanced permeability and retention (EPR) effect can be an added advantage for nanosize liposomes to concentrate into the tumor microenvironment through relatively leaky vasculature of solid tumor in the brain where no penetration restriction applies compared to normal BBB. Here in this review, we have tried to compile the recent advancement along with the associated challenges of liposomes containing different anti-cancer chemotherapeutics across the BBB/BBTB for the treatment of gliomas that will be very helpful for the readers for better understanding of different trends of brain tumor targeted liposomes-based drug delivery and for pursuing fruitful research on the similar research domain.

Keywords: Blood-brain barrier, brain targeting, brain tumor, enhanced permeability and retention effect, glioma, liposomes, treatment of brain tumor.

Graphical Abstract
[1]
Butowski, N.A. Epidemiology and diagnosis of brain tumors. Continuum (Minneap. Minn.), 2015, 21(2 Neuro-oncology), 301-313.
[http://dx.doi.org/10.1212/01.CON.0000464171.50638.fa] [PMID: 25837897]
[2]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev., 2017, 18(1), 3-9.
[http://dx.doi.org/10.22034/APJCP.2017.18.1.3] [PMID: 28239999]
[3]
Paolillo, M.; Boselli, C.; Schinelli, S. Glioblastoma under siege: An overview of current therapeutic strategies. Brain Sci., 2018, 8(1), 15.
[http://dx.doi.org/10.3390/brainsci8010015] [PMID: 29337870]
[4]
McPherson, C. Mayfield Brain & Spine. Glioma brain tumors (astrocytoma, oligodendroglioma, glioblastoma) 2018. Available from: http://mayfieldclinic.com/pe-glioma.htm [Accessed 23 October 2020
[5]
Hara, A.; Kanayama, T.; Noguchi, K.; Niwa, A.; Miyai, M.; Kawaguchi, M.; Ishida, K.; Hatano, Y.; Niwa, M.; Tomita, H. Treatment strategies based on histological targets against invasive and resistant glioblastoma. J. Oncol., 2019, 2019, 2964783.
[http://dx.doi.org/10.1155/2019/2964783] [PMID: 31320900]
[6]
De Vleeschouwer, S.; Bergers, G. Glioblastoma: To target the tumor cell or the microenvironment? Exon. Publications, 2017, 315-340.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch16]
[7]
Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int. J. Nanomedicine, 2020, 15, 2809-2828.
[http://dx.doi.org/10.2147/IJN.S241055] [PMID: 32368056]
[8]
Di Carlo, D.T.; Cagnazzo, F.; Benedetto, N.; Morganti, R.; Perrini, P. Multiple high-grade gliomas: epidemiology, management, and outcome. A systematic review and meta-analysis. Neurosurg. Rev., 2019, 42(2), 263-275.
[http://dx.doi.org/10.1007/s10143-017-0928-7] [PMID: 29138949]
[9]
Hirai, M.; Sato, S.; Kimura, R.; Hagiwara, Y.; Kawai-Hirai, R.; Ohta, N.; Igarashi, N.; Shimizu, N. Effect of protein-encapsulation on thermal structural stability of liposome composed of glycosphingolipid/cholesterol/phospholipid. J. Phys. Chem. B, 2015, 119(8), 3398-3406.
[http://dx.doi.org/10.1021/jp511534u] [PMID: 25642599]
[10]
Corrêa, A.C.N.T.F.; Pereira, P.R.; Paschoalin, V.M.F. Preparation and characterization of nanoliposomes for the entrapment of bioactive hydrophilic globular proteins. J. Vis. Exp., 2019, 150(150), e59900.
[http://dx.doi.org/10.3791/59900] [PMID: 31524878]
[11]
He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B, 2019, 9(1), 36-48.
[http://dx.doi.org/10.1016/j.apsb.2018.06.005] [PMID: 30766776]
[12]
Guan, J.; Jiang, Z.; Wang, M.; Liu, Y.; Liu, J.; Yang, Y.; Ding, T.; Lu, W.; Gao, C.; Qian, J.; Zhan, C. Short peptide-mediated brain- targeted drug delivery with enhanced immunocompatibility. Mol. Pharm., 2019, 16(2), 907-913.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01216] [PMID: 30666875]
[13]
Satapathy, B.S.; Mukherjee, B.; Baishya, R.; Debnath, M.C.; Dey, N.S.; Maji, R. Lipid nanocarrier-based transport of docetaxel across the blood brain barrier. RSC Advances, 2016, 6(88), 85261-85274.
[http://dx.doi.org/10.1039/C6RA16426A]
[14]
Rotman, M.; Welling, M.M.; Bunschoten, A.; de Backer, M.E.; Rip, J.; Nabuurs, R.J.; Gaillard, P.J.; van Buchem, M.A.; van der Maarel, S.M.; van der Weerd, L. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J. Control. Release, 2015, 203, 40-50.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.012] [PMID: 25668771]
[15]
Belhadj, Z.; Zhan, C.; Ying, M.; Wei, X.; Xie, C.; Yan, Z.; Lu, W. Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget, 2017, 8(40), 66889-66900.
[http://dx.doi.org/10.18632/oncotarget.17976] [PMID: 28978003]
[16]
Sapra, P.; Tyagi, P.; Allen, T.M. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv., 2005, 2(4), 369-381.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[17]
Vyas, T.K.; Shahiwala, A.; Marathe, S.; Misra, A. Intranasal drug delivery for brain targeting. Curr. Drug Deliv., 2005, 2(2), 165-175.
[http://dx.doi.org/10.2174/1567201053586047] [PMID: 16305417]
[18]
Sunena, ; Singh, S.K.; Mishra, D.N. Nose to brain delivery of galantamine loaded nanoparticles: In-vivo pharmacodynamic and biochemical study in mice. Curr. Drug Deliv., 2019, 16(1), 51-58.
[http://dx.doi.org/10.2174/1567201815666181004094707] [PMID: 30289074]
[19]
Kashyap, K.; Shukla, R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr. Drug Deliv., 2019, 16(10), 887-901.
[http://dx.doi.org/10.2174/1567201816666191029122740] [PMID: 31660815]
[20]
Patel, A.A.; Patel, R.J.; Patel, S.R. Nanomedicine for intranasal delivery to improve brain uptake. Curr. Drug Deliv., 2018, 15(4), 461-469.
[http://dx.doi.org/10.2174/1567201814666171013150534] [PMID: 29034836]
[21]
Ahmad, J.; Rizwanullah, M.; Amin, S.; Warsi, M.H.; Ahmad, M.Z.; Barkat, M.A. Nanostructured lipid carriers (NLCs): Nose- to-brain delivery and theranostic application. Curr. Drug Metab., 2020, 21(14), 1136-1143.
[http://dx.doi.org/10.2174/1389200221666200719003304] [PMID: 32682366]
[22]
Labi, V.; Erlacher, M. How cell death shapes cancer. Cell Death Dis., 2015, 6(3), e1675.
[http://dx.doi.org/10.1038/cddis.2015.20] [PMID: 25741600]
[23]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[24]
Botezatu, A.; Iancu, I.V.; Popa, O.; Plesa, A.; Manda, D.; Huica, I.; Vladoiu, S.; Anton, G.; Badiu, C. Mechanisms of oncogene activation. In: New Aspects in Molecular and Cellular Mechanisms of Human Carcinogenesis; Bulgin, D., Ed.; IntechOpen: London, 2016; pp. 1-52.
[http://dx.doi.org/10.5772/61249]
[25]
Arasu, A.; Murugan, S.; Essa, M.M.; Velusamy, T.; Guillemin, G.J. PAX3: A molecule with oncogenic or tumor suppressor function is involved in cancer. BioMed Res. Int., 2018, 2018, 1095459.
[http://dx.doi.org/10.1155/2018/1095459]
[26]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[27]
Arneth, B. Tumor Microenvironment. Medicina (Kaunas), 2019, 56(1), 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[28]
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[29]
Kikuchi, S.; Yoshioka, Y.; Prieto-Vila, M.; Ochiya, T. Involvement of extracellular vesicles in vascular-related functions in cancer progression and metastasis. Int. J. Mol. Sci., 2019, 20(10), 2584.
[http://dx.doi.org/10.3390/ijms20102584] [PMID: 31130715]
[30]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[31]
Chen, Y.; Dalwadi, G.; Benson, H.A. Drug delivery across the blood-brain barrier. Curr. Drug Deliv., 2004, 1(4), 361-376.
[http://dx.doi.org/10.2174/1567201043334542] [PMID: 16305398]
[32]
Belykh, E.; Shaffer, K.V.; Lin, C.; Byvaltsev, V.A.; Preul, M.C.; Chen, L. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: Delivering optical labels to brain tumors. Front. Oncol., 2020, 10, 739.
[http://dx.doi.org/10.3389/fonc.2020.00739] [PMID: 32582530]
[33]
Mendes, M.; Sousa, J.J.; Pais, A.; Vitorino, C. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics, 2018, 10(4), 181.
[http://dx.doi.org/10.3390/pharmaceutics10040181] [PMID: 30304861]
[34]
Natfji, A.A.; Ravishankar, D.; Osborn, H.M.I.; Greco, F. Parameters affecting the enhanced permeability and retention effect: The need for patient selection. J. Pharm. Sci., 2017, 106(11), 3179-3187.
[http://dx.doi.org/10.1016/j.xphs.2017.06.019] [PMID: 28669714]
[35]
Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[36]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[37]
Bellettato, C.M.; Scarpa, M. Possible strategies to cross the blood-brain barrier. Ital. J. Pediatr., 2018, 44(2)(Suppl. 2), 131.
[http://dx.doi.org/10.1186/s13052-018-0563-0] [PMID: 30442184]
[38]
Guntner, A.S.; Peyrl, A.; Mayr, L.; Englinger, B.; Berger, W.; Slavc, I.; Buchberger, W.; Gojo, J. Cerebrospinal fluid penetration of targeted therapeutics in pediatric brain tumor patients. Acta Neuropathol. Commun., 2020, 8(1), 78.
[http://dx.doi.org/10.1186/s40478-020-00953-2] [PMID: 32493453]
[39]
El Maghraby, G.M.; Arafa, M.F. Liposomes for enhanced cellular uptake of anticancer agents. Curr. Drug Deliv., 2020, 17(10), 861-873.
[http://dx.doi.org/10.2174/1567201817666200708113131] [PMID: 32640957]
[40]
Bors, L.A.; Erdő, F. Overcoming the blood-brain barrier. Challenges and tricks for CNS drug delivery. Sci. Pharm., 2019, 87(1), 6.
[http://dx.doi.org/10.3390/scipharm87010006]
[41]
Barar, J.; Rafi, M.A.; Pourseif, M.M.; Omidi, Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts, 2016, 6(4), 225-248.
[http://dx.doi.org/10.15171/bi.2016.30] [PMID: 28265539]
[42]
Pulgar, V.M. Transcytosis to cross the blood brain barrier, New advancements and challenges. Front. Neurosci., 2019, 12, 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[43]
Qosa, H.; Miller, D.S.; Pasinelli, P.; Trotti, D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res., 2015, 1628(Pt B), 298-316.
[http://dx.doi.org/10.1016/j.brainres.2015.07.005]
[44]
Gomez-Zepeda, D.; Taghi, M.; Scherrmann, J.M.; Decleves, X.; Menet, M.C. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics, 2019, 12(1), 20.
[http://dx.doi.org/10.3390/pharmaceutics12010020] [PMID: 31878061]
[45]
de Gooijer, M.C.; Zhang, P.; Weijer, R.; Buil, L.C.M.; Beijnen, J.H.; van Tellingen, O. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int. J. Cancer, 2018, 142(2), 381-391.
[http://dx.doi.org/10.1002/ijc.31052] [PMID: 28921565]
[46]
Kasinathan, N.; Jagani, H.V.; Alex, A.T.; Volety, S.M.; Rao, J.V. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv., 2015, 22(3), 243-257.
[http://dx.doi.org/10.3109/10717544.2013.878858] [PMID: 24471801]
[47]
Vieira, D.B.; Gamarra, L.F. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomedicine, 2016, 11, 5381-5414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[48]
Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev., 2019, 48(11), 2967-3014.
[http://dx.doi.org/10.1039/C8CS00805A] [PMID: 31089607]
[49]
Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193.
[http://dx.doi.org/10.2174/1381612822666151221150733] [PMID: 26685681]
[50]
Kiviniemi, V.; Korhonen, V.; Kortelainen, J.; Rytky, S.; Keinänen, T.; Tuovinen, T.; Isokangas, M.; Sonkajärvi, E.; Siniluoto, T.; Nikkinen, J.; Alahuhta, S.; Tervonen, O.; Turpeenniemi-Hujanen, T.; Myllylä, T.; Kuittinen, O.; Voipio, J. Real-time monitoring of human blood-brain barrier disruption. PLoS One, 2017, 12(3), e0174072.
[http://dx.doi.org/10.1371/journal.pone.0174072] [PMID: 28319185]
[51]
Greene, C.; Campbell, M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers, 2016, 4(1), e1138017.
[http://dx.doi.org/10.1080/21688370.2015.1138017] [PMID: 27141420]
[52]
Zhan, W.; Wang, C.H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J. Control. Release, 2018, 285, 212-229.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.006] [PMID: 30009891]
[53]
Lin, C.Y.; Li, R.J.; Huang, C.Y.; Wei, K.C.; Chen, P.Y. Controlled release of liposome-encapsulated temozolomide for brain tumour treatment by convection-enhanced delivery. J. Drug Target., 2018, 26(4), 325-332.
[http://dx.doi.org/10.1080/1061186X.2017.1379526] [PMID: 28911239]
[54]
Han, Y.; Park, J.H. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv. Transl. Res., 2020, 10(6), 1876-1887.
[http://dx.doi.org/10.1007/s13346-020-00773-w] [PMID: 32367425]
[55]
Rautio, J.; Kärkkäinen, J.; Sloan, K.B. Prodrugs - Recent approvals and a glimpse of the pipeline. Eur. J. Pharm. Sci., 2017, 109, 146-161.
[http://dx.doi.org/10.1016/j.ejps.2017.08.002] [PMID: 28782609]
[56]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Design, synthesis, chemical and biological evaluation of brain targeted alkylating agent using reversible redox prodrug approach. Arab. J. Chem., 2017, 10(3), 420-429.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.008]
[57]
Oberoi, R.K.; Parrish, K.E.; Sio, T.T.; Mittapalli, R.K.; Elmquist, W.F.; Sarkaria, J.N. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro-oncol., 2016, 18(1), 27-36.
[http://dx.doi.org/10.1093/neuonc/nov164] [PMID: 26359209]
[58]
van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[59]
Jaramillo, A.C.; Saig, F.A.; Cloos, J.; Jansen, G.; Peters, G.J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist., 2018, 1, 6-29.
[http://dx.doi.org/10.20517/cdr.2018.02]
[60]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.012] [PMID: 26458789]
[61]
Spicer, C.D.; Jumeaux, C.; Gupta, B.; Stevens, M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev., 2018, 47(10), 3574-3620.
[http://dx.doi.org/10.1039/C7CS00877E] [PMID: 29479622]
[62]
Nabi, B.; Rehman, S.; Khan, S.; Baboota, S.; Ali, J. Ligand conjugation: An emerging platform for enhanced brain drug delivery. Brain Res. Bull., 2018, 142, 384-393.
[http://dx.doi.org/10.1016/j.brainresbull.2018.08.003] [PMID: 30086350]
[63]
He, R.; Finan, B.; Mayer, J.P.; DiMarchi, R.D. Peptide conjugates with small molecules designed to enhance efficacy and safety. Molecules, 2019, 24(10), 1855.
[http://dx.doi.org/10.3390/molecules24101855] [PMID: 31091786]
[64]
Sakamoto, K.; Shinohara, T.; Adachi, Y.; Asami, T.; Ohtaki, T. A novel LRP1-binding peptide L57 that crosses the blood brain barrier. Biochem. Biophys. Rep., 2017, 12, 135-139.
[http://dx.doi.org/10.1016/j.bbrep.2017.07.003] [PMID: 29090274]
[65]
Karkan, D.; Pfeifer, C.; Vitalis, T.Z.; Arthur, G.; Ujiie, M.; Chen, Q.; Tsai, S.; Koliatis, G.; Gabathuler, R.; Jefferies, W.A. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS One, 2008, 3(6), e2469.
[http://dx.doi.org/10.1371/journal.pone.0002469] [PMID: 18575595]
[66]
Werengowska-Ciećwierz, K.; Wiśniewski, M.; Terzyk, A.P.; Furmaniak, S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Condens. Matter Phys., 2015, 2015, 198175.
[http://dx.doi.org/10.1155/2015/198175]
[67]
Chen, Z.L.; Huang, M.; Wang, X.R.; Fu, J.; Han, M.; Shen, Y.Q.; Xia, Z.; Gao, J.Q. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine, 2016, 12(2), 421-430.
[http://dx.doi.org/10.1016/j.nano.2015.10.021] [PMID: 26711963]
[68]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez- Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[69]
Teleanu, D.M.; Negut, I.; Grumezescu, V.; Grumezescu, A.M.; Teleanu, R.I. Nanomaterials for drug delivery to the central nervous system. Nanomaterials (Basel), 2019, 9(3), 371.
[http://dx.doi.org/10.3390/nano9030371] [PMID: 30841578]
[70]
Wei, X.; Gao, J.; Zhan, C.; Xie, C.; Chai, Z.; Ran, D.; Ying, M.; Zheng, P.; Lu, W. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J. Control. Release, 2015, 218, 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.059] [PMID: 26428462]
[71]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[72]
Bardania, H.; Tarvirdipour, S.; Dorkoosh, F. Liposome-targeted delivery for highly potent drugs. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1478-1489.
[http://dx.doi.org/10.1080/21691401.2017.1290647] [PMID: 28278584]
[73]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[74]
Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol., 2019, 10(1), 11.
[http://dx.doi.org/10.1186/s12645-019-0055-y]
[75]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[76]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[77]
Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7(1), 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[78]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[79]
Wolfram, J.; Scott, B.; Boom, K.; Shen, J.; Borsoi, C.; Suri, K.; Grande, R.; Fresta, M.; Celia, C.; Zhao, Y.; Shen, H.; Ferrari, M. Hesperetin liposomes for cancer therapy. Curr. Drug Deliv., 2016, 13(5), 711-719.
[http://dx.doi.org/10.2174/1567201812666151027142412] [PMID: 26502889]
[80]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[81]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[82]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[83]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[84]
Najlah, M.; Said Suliman, A.; Tolaymat, I.; Kurusamy, S.; Kannappan, V.; Elhissi, A.M.A.; Wang, W. Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment. Pharmaceutics, 2019, 11(11), 610.
[http://dx.doi.org/10.3390/pharmaceutics11110610] [PMID: 31739556]
[85]
Nosova, A.S.; Koloskova, O.O.; Nikonova, A.A.; Simonova, V.A.; Smirnov, V.V.; Kudlay, D.; Khaitov, M.R. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MedChemComm, 2019, 10(3), 369-377.
[http://dx.doi.org/10.1039/C8MD00515J] [PMID: 31015904]
[86]
Bernard, J.; Treton, D.; Vermot-Desroches, C.; Boden, C.; Horellou, P.; Angevin, E.; Galanaud, P.; Wijdenes, J.; Richard, Y. Expression of interleukin 13 receptor in glioma and renal cell carcinoma: IL13Ralpha2 as a decoy receptor for IL13. Lab. Invest., 2001, 81(9), 1223-1231.
[http://dx.doi.org/10.1038/labinvest.3780336] [PMID: 11555670]
[87]
Madhankumar, A.B.; Slagle-Webb, B.; Mintz, A.; Sheehan, J.M.; Connor, J.R. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol. Cancer Ther., 2006, 5(12), 3162-3169.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0480] [PMID: 17172420]
[88]
Sun, T.; Wu, H.; Li, Y.; Huang, Y.; Yao, L.; Chen, X.; Han, X.; Zhou, Y.; Du, Z. Targeting transferrin receptor delivery of temozolomide for a potential glioma stem cell-mediated therapy. Oncotarget, 2017, 8(43), 74451-74465.
[http://dx.doi.org/10.18632/oncotarget.20165] [PMID: 29088799]
[89]
McCord, E.; Pawar, S.; Koneru, T.; Tatiparti, K.; Sau, S.; Iyer, A.K. Folate receptors’ expression in gliomas may possess potential nanoparticle-based drug delivery opportunities. ACS Omega, 2021, 6(6), 4111-4118.
[http://dx.doi.org/10.1021/acsomega.0c05500] [PMID: 33623837]
[90]
An, Y.; Tang, Q.; Yang, R.; Liu, D.; Zhang, D. In vivo MR imaging of folate-receptor expression with the folate-specific nanospheres in a C6 glioblastoma model. Comput. Assist. Surg. (Abingdon)., 2017, 22(sup1), 312-318.
[http://dx.doi.org/10.1080/24699322.2017.1389410] [PMID: 29103327]
[91]
Liu, X.; Madhankumar, A.B.; Miller, P.A.; Duck, K.A.; Hafenstein, S.; Rizk, E.; Slagle-Webb, B.; Sheehan, J.M.; Connor, J.R.; Yang, Q.X. MRI contrast agent for targeting glioma: Interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro-oncol., 2016, 18(5), 691-699.
[http://dx.doi.org/10.1093/neuonc/nov263] [PMID: 26519740]
[92]
Li, M.; Shi, K.; Tang, X.; Wei, J.; Cun, X.; Chen, X.; Yu, Q.; Zhang, Z.; He, Q. pH-sensitive folic acid and dNP2 peptide dual- modified liposome for enhanced targeted chemotherapy of glioma. Eur. J. Pharm. Sci., 2018, 124, 240-248.
[http://dx.doi.org/10.1016/j.ejps.2018.07.055] [PMID: 30071282]
[93]
Lohade, A.A.; Jain, R.R.; Iyer, K.; Roy, S.K.; Shimpi, H.H.; Pawar, Y.; Rajan, M.G.; Menon, M.D. A novel folate-targeted nanoliposomal system of doxorubicin for cancer targeting. AAPS PharmSciTech, 2016, 17(6), 1298-1311.
[http://dx.doi.org/10.1208/s12249-015-0462-2] [PMID: 26689406]
[94]
Jhaveri, A.; Deshpande, P.; Pattni, B.; Torchilin, V. Transferrin- targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J. Control. Release, 2018, 277, 89-101.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.006] [PMID: 29522834]
[95]
Jhaveri, A.; Luther, E.; Torchilin, V. The effect of transferrin-targeted, resveratrol-loaded liposomes on neurosphere cultures of glioblastoma: Implications for targeting tumour-initiating cells. J. Drug Target., 2019, 27(5-6), 601-613.
[http://dx.doi.org/10.1080/1061186X.2018.1550647] [PMID: 30475084]
[96]
Mu, L.M.; Bu, Y.Z.; Liu, L.; Xie, H.J.; Ju, R.J.; Wu, J.S.; Zeng, F.; Zhao, Y.; Zhang, J.Y.; Lu, W.L. Lipid vesicles containing transferrin receptor binding peptide TfR-T 12 and octa-arginine conjugate stearyl-R 8 efficiently treat brain glioma along with glioma stem cells. Sci. Rep., 2017, 7(1), 1-12.
[http://dx.doi.org/10.1038/s41598-017-03805-7] [PMID: 28127051]
[97]
Liu, C.; Liu, X.N.; Wang, G.L.; Hei, Y.; Meng, S.; Yang, L.F.; Yuan, L.; Xie, Y. A dual-mediated liposomal drug delivery system targeting the brain: Rational construction, integrity evaluation across the blood-brain barrier, and the transporting mechanism to glioma cells. Int. J. Nanomed., 2017, 12, 2407-2425.
[http://dx.doi.org/10.2147/IJN.S131367] [PMID: 28405164]
[98]
Kang, S.; Duan, W.; Zhang, S.; Chen, D.; Feng, J.; Qi, N. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics, 2020, 10(10), 4308-4322.
[http://dx.doi.org/10.7150/thno.41322] [PMID: 32292496]
[99]
Lakkadwala, S.; Singh, J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf. B Biointerfaces, 2019, 173, 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[100]
Lakkadwala, S.; Singh, J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J. Pharm. Sci., 2018, 107(11), 2902-2913.
[http://dx.doi.org/10.1016/j.xphs.2018.07.020] [PMID: 30055226]
[101]
Ashrafzadeh, M.S.; Akbarzadeh, A.; Heydarinasab, A.; Ardjmand, M. In vivo glioblastoma therapy using targeted liposomal cisplatin. Int. J. Nanomed., 2020, 15, 7035-7049.
[http://dx.doi.org/10.2147/IJN.S255902] [PMID: 33061366]
[102]
Zhang, Y.; Zhai, M.; Chen, Z.; Han, X.; Yu, F.; Li, Z.; Xie, X.; Han, C.; Yu, L.; Yang, Y.; Mei, X. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv., 2017, 24(1), 1045-1055.
[http://dx.doi.org/10.1080/10717544.2017.1344334] [PMID: 28687044]
[103]
Helm, F.; Fricker, G. Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics, 2015, 7(2), 27-42.
[http://dx.doi.org/10.3390/pharmaceutics7020027] [PMID: 25835091]
[104]
Chen, C.; Duan, Z.; Yuan, Y.; Li, R.; Pang, L.; Liang, J.; Xu, X.; Wang, J. Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl. Mater. Interfaces, 2017, 9(7), 5864-5873.
[http://dx.doi.org/10.1021/acsami.6b15831] [PMID: 28128553]
[105]
Wang, X.; Zhao, Y.; Dong, S.; Lee, R.J.; Yang, D.; Zhang, H.; Teng, L. Cell-penetrating peptide and transferrin co-modified liposomes for targeted therapy of glioma. Molecules, 2019, 24(19), 3540.
[http://dx.doi.org/10.3390/molecules24193540] [PMID: 31574945]
[106]
Lakkadwala, S.; Dos Santos Rodrigues, B.; Sun, C.; Singh, J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine, 2020, 23, 102112.
[http://dx.doi.org/10.1016/j.nano.2019.102112] [PMID: 31669083]
[107]
Sonali; Singh, R.P.; Sharma, G.; Kumari, L.; Koch, B.; Singh, S.; Bharti, S.; Rajinikanth, P.S.; Pandey, B.L.; Muthu, M.S. RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces, 2016, 147, 129-141.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.058]
[108]
Sonali, ; Singh, R.P.; Singh, N.; Sharma, G.; Vijayakumar, M.R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B.L.; Muthu, M.S. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv., 2016, 23(4), 1261-1271.
[http://dx.doi.org/10.3109/10717544.2016.1162878] [PMID: 26961144]
[109]
Shaw, T.K.; Mandal, D.; Dey, G.; Pal, M.M.; Paul, P.; Chakraborty, S.; Ali, K.A.; Mukherjee, B.; Bandyopadhyay, A.K.; Mandal, M. Successful delivery of docetaxel to rat brain using experimentally developed nanoliposome: A treatment strategy for brain tumor. Drug Deliv., 2017, 24(1), 346-357.
[http://dx.doi.org/10.1080/10717544.2016.1253798] [PMID: 28165821]
[110]
Shi, D.; Mi, G.; Shen, Y.; Webster, T.J. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale, 2019, 11(32), 15057-15071.
[http://dx.doi.org/10.1039/C9NR03931G] [PMID: 31369016]
[111]
Park, S.H.; Yoon, Y.I.; Moon, H.; Lee, G.H.; Lee, B.H.; Yoon, T.J.; Lee, H.J. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells. Oncol. Rep., 2016, 36(1), 131-136.
[http://dx.doi.org/10.3892/or.2016.4836] [PMID: 27220374]
[112]
Mohammad, A.S.; Griffith, J.I.; Adkins, C.E.; Shah, N.; Sechrest, E.; Dolan, E.L.; Terrell-Hall, T.B.; Hendriks, B.S.; Lee, H.; Lockman, P.R. Liposomal irinotecan accumulates in metastatic lesions, crosses the blood-tumor barrier (BTB), and prolongs survival in an experimental model of brain metastases of triple negative breast cancer. Pharm. Res., 2018, 35(2), 31.
[http://dx.doi.org/10.1007/s11095-017-2278-0] [PMID: 29368289]
[113]
Hu, J.; Wang, J.; Wang, G.; Yao, Z.; Dang, X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int. J. Mol. Med., 2016, 37(3), 690-702.
[http://dx.doi.org/10.3892/ijmm.2016.2458] [PMID: 26782731]
[114]
Arcella, A.; Palchetti, S.; Digiacomo, L.; Pozzi, D.; Capriotti, A.L.; Frati, L.; Oliva, M.A.; Tsaouli, G.; Rota, R.; Screpanti, I.; Mahmoudi, M.; Caracciolo, G. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem. Neurosci., 2018, 9(12), 3166-3174.
[http://dx.doi.org/10.1021/acschemneuro.8b00339] [PMID: 30015470]
[115]
Zhan, W. Delivery of liposome encapsulated temozolomide to brain tumour: Understanding the drug transport for optimisation. Int. J. Pharm., 2019, 557, 280-292.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.065] [PMID: 30599226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy