Skip to main content
Log in

Approximate Analytical Solutions of Biofilm Reactor Problem in Applied Biotechnology

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Dueck’s mathematical model of biofilm is discussed. This model is also generalized to cover all substratum types. This system is based on a nonlinear reaction–diffusion equation that includes a nonlinear term related to square law of microbial death rate. In this paper, the analytical expression of the substrate consumption and flux in a biofilm is obtained by solving the nonlinear differential equation using the Taylor series and the modified Adomian decomposition method. Comparing the results obtained with the numerical method and limiting case results shows the validity and usefulness of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Christensen, B.E. and Characklis, W.G., Physical and chemical properties of biofilms, Biofilms, Characklis, W.G. and Marshall, K.C., Eds., New York: Wiley, 1990, pp. 93–130.

    Google Scholar 

  2. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987, 3rd ed.

  3. Poltorak, O.M., Pryakhin, A.N., and Shaitan, K.V., A general approach to solving kinetic problems, Vestn. Mosk. Univ., Ser. 2: Khim., 1975, no. 5, pp. 536–543.

  4. Williamson, K. and McCarty, P.L., A model of substrate utilization by bacterial films, J. - Water Pollut. Control Fed., 1976, vol. 48, no. 1, pp. 9–24.

    CAS  PubMed  Google Scholar 

  5. Rittmann, B.E. and McCarty, P.L., Evaluation of steady state biofilm kinetics, Biotechnol. Bioeng., 1980,vol. 22, no. 11, pp. 2359–2373.

    Article  CAS  Google Scholar 

  6. Wimpenny, J.W. and Colasanti, R., A more unifying hypothesis for biofilm structures – A reply, FEMS Microbiol. Ecol., 1997, vol. 24, no. 2, pp. 185–186.

    Article  CAS  Google Scholar 

  7. Picioreanu, C., Van Loosdrecht, M.C.M., and Heijnen, J.J., Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach, Biotechnol. Bioeng., 1998, vol. 58, no. 1, pp. 101–116.

    Article  CAS  Google Scholar 

  8. Picioreanu, C., Kreft, J.H., and Van Loosdrecht, M.C.M., Particle-based multidimensional multispecies biofilm model, Appl. Environ. Microbiol., 2004, pp. 3024–3040.

  9. Noguera, D.R., Okabe, S., and Picioreanu, C., Biofilm modeling: Present status and future directions, Water Sci. Technol., 1999, vol. 39, no. 7, pp. 273–278.

    Article  Google Scholar 

  10. Kreft, J.U., Picioreanu, C., Van Loosdrecht, M.C.M., and Wimpenny, J.W.T., Individual-based modelling of biofilms, Microbiology, 2001, vol. 147, no. 11, pp. 2897–2912.

    Article  CAS  Google Scholar 

  11. Riedel, K., Steidle, A., Eberl, L., Wu, H., Geisenberger, O., Molin, S., and Givskov, M., N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderiacepacia in mixed biofilms, Microbiology, 2001, vol. 147, no. 12, pp. 3249–3262.

    Article  CAS  Google Scholar 

  12. Morgenroth, E., Eberl, H.J., Van Loosdrecht, M.C.M., Noguera, D.R., Pizarro G.E., Picioreanu C., and Wanner, O., Comparing biofilm models for a single species biofilm system, Water Sci. Technol., 2004, vol. 49, nos. 11–12, pp. 145–154.

    Article  CAS  Google Scholar 

  13. Laspidou, C.S. and Rittmann, B.E., Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances, Water Res., 2004, vol. 38, nos. 14–15, pp. 3349–3361.

    Article  CAS  Google Scholar 

  14. Hermanowicz, S.W., A model of two-dimensional biofilm morphology, Water Sci. Technol., 1998, vol. 37, nos. 4–5, pp. 219–222.

    Article  Google Scholar 

  15. Hermanowicz, S.W., A simple 2D biofilm model yields a variety of morphological features, Math. Biosci., 2001, vol. 169, no. 1, pp. 1–14. https://doi.org/10.1016/S0025-5564(00)00049-3

    Article  CAS  PubMed  Google Scholar 

  16. Min’kov, L.L., Pyl’nik, S.V., and Dueck, J.H., Steady-state problem of substrate consumption in a biofilm for a square law of microbial death rate, Theor. Found. Chem. Eng., 2006, vol. 40, no. 5, pp. 496–502. https://doi.org/10.1134/S004057950605006X

    Article  CAS  Google Scholar 

  17. Dueck, J.H., Diffusion-kinetic rate of substrate consumption in a biofilm, Theor. Found. Chem. Eng., 2005, vol. 39, no. 6, pp. 573–578. https://doi.org/10.1007/s11236-005-0119-z

    Article  CAS  Google Scholar 

  18. Muthukaruppan, S., Eswari, A., and Rajendran L., Mathematical modelling of a biofilm: The Adomian decomposition method, Nat. Sci., 2013, vol. 5, no. 4, pp. 456–462.

    Google Scholar 

  19. Adomian, G., A review of the decomposition method in applied mathematics, J. Math., Anal. Appl., 1988, vol. 135, pp. 501–544.

    Article  Google Scholar 

  20. Liao, S.J., On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 2007, vol. 147, pp. 499–513.

    Google Scholar 

  21. Liao, S.J., Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 2005, vol. 169, pp. 1186–1194.

    Google Scholar 

  22. He, J.H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 1999, vol. 178, nos. 3–4, pp. 257–262.

    Article  Google Scholar 

  23. He, J.H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-Linear Mech., 2000, vol. 35, no. 1, pp. 37–43.

    Article  Google Scholar 

  24. Saravanakumar, R., Pirabaharan, P., Abukhaled, M., and Rajendran, L., Theoretical analysis of voltammetry at a rotating disk electrode in the absence of supporting electrolyte, J. Phys. Chem. B, 2020, vol. 124, no. 3, pp. 443–450.

    Article  CAS  Google Scholar 

  25. He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 2000, vol. 114, nos. 2–3, pp. 115–123.

    Google Scholar 

  26. Odibat, Z. and Momani, S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 2008, vol. 21, no. 2, pp. 194–199.

    Article  Google Scholar 

  27. Saranya, K., Mohan V., and Rajendran, L., Steady‑state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by residual method, J. Math. Chem., 2020, vol. 58, pp. 1230–1246.

    Article  CAS  Google Scholar 

  28. Nirmala K., Manimegalai, B., and Rajendran, L., Steady-state substrate and product concentrations for Non-Michaelis–Menten kinetics in an amperometric biosensor – Hyperbolic function and Padé approximants method, Int. J. Electrochem. Sci., 2020, vol. 15, pp. 5682–5697.

    Article  CAS  Google Scholar 

  29. Miletics, E. and Molnárka, G., Taylor series method with numerical derivatives for initial value problems, J. Comput. Methods Sci. Eng., 2004, vol. 4, nos. 1–2, pp. 105–114.

    Google Scholar 

  30. Rentrop, P., A Taylor series method for the numerical solution of two-point boundary value problems, Numer. Math., 1978, vol. 31, no. 4, pp. 359–375.

    Article  Google Scholar 

  31. Miletics, E. and Molnárka, G., Taylor series method with numerical derivatives for numerical solution of ODE initial values problems, Hung. Electron. J. Sci: Appl. Numer. Math., 2003, pp. 1–16.

  32. Georgiev, S.G. and Erhan, I.M., The Taylor series method and trapezoidal rule on time scales, Appl. Math. Comput., 2020, vol. 378, pp. 1–13.

    Google Scholar 

  33. Groza, G. and Razzaghi, M., A Taylor series method for the solution of the linear initial–boundary-value problems for partial differential equations, Comput. Math. Appl., 2013, vol. 66, no. 7, pp. 1329–1343.

    Article  Google Scholar 

  34. Usha Rani, R. and Rajendran, L., Taylor’s series method for solving the nonlinear reaction-diffusion equation in the electroactive polymer film, Chem. Phys. Lett., 2020, vol. 754, pp. 1–30.

    Article  Google Scholar 

  35. Barrio, R., Rodriguez, M., Abad, A., and Blesa, F., Breaking the limits: The Taylor series method, Appl. Math. Comput., 2011,vol. 217, no. 20, pp. 7940–7954.

    Google Scholar 

  36. Rodríguez, M. and Barrio, R., Reducing rounding errors and achieving Brouwerʼs law with Taylor Series Method, Appl. Numer. Math., 2012, vol. 62, no. 8, pp. 1014–1024.

    Article  Google Scholar 

  37. Shiraishi, F., Egashira, M., and Iwata, M., Highly accurate computation of dynamic sensitivities in metabolic reaction systems by a Taylor series method, Math. Biosci., 2011, vol. 233, no. 1, pp. 59–67.

    Article  Google Scholar 

  38. Wazwaz, A.M., A comparison between Adomian decomposition method and Taylor series method in the series solutions, Appl. Math. Comput., 1998, vol. 97, no. 1, pp. 37–44.

    Google Scholar 

  39. He, J.H., Taylor series solution for a third order boundary value problem arising in Architectural Engineering, Ain Shams Eng. J., 2020, vol. 11, no. 4, pp. 1411–1414. https://doi.org/10.1016/j.asej.2020.01.016

    Article  Google Scholar 

  40. He, C.H., Shen, Y., Ji, F.Y., and He, J.H., Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 2020, vol. 28, pp. 1–8. https://doi.org/10.1142/S0218348X20500115

    Article  Google Scholar 

  41. Chitra Devi, M., Pirabaharan, P., Abukhaled, M., and Rajendran, L., Analysis of the steady-state behavior of pseudo-first-order EC-catalytic mechanism at a rotating disk electrode, Electrochim. Acta, 2020, vol. 345, no. 10, article no. 136175. https://doi.org/10.1016/j.electacta.2020.136175

    Article  CAS  Google Scholar 

  42. Wik, T., On modeling the dynamics of fixed biofilm reactors with focus on nitrifying trickling filters, PhD Thesis, Gothenburg: Chalmers Univ. of Technology, 1999.

  43. Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Dordrecht: Kluwer Academic, 1994.

    Book  Google Scholar 

  44. Al-Hayani, W. and Casasus, L., The Adomian decomposition method in turning point problems, J. Comput. Appl. Math., 2005, vol. 177, pp. 187–203.

    Article  Google Scholar 

  45. Wazwaz, M., Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput., 2005, vol. 166, pp. 652–663.

    Google Scholar 

  46. Hasan, Y.Q. and Zhu, L.M., Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul., 2009, vol. 14, no. 6, pp. 2592–2596. https://doi.org/10.1016/j.cnsns.2008.09.027

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to the reviewers for their comments and suggestion. The authors are also thankful to Shri J. Ramachandran, Chancellor, Col. Dr. G. Thiruvasagam, Vice-Chancellor, Dr. M. Jayaprakashvel, registrar Academy of Maritime Education and Training (AMET), Deemed to be University, Chennai, for their constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rajendran.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

APPENDIX A

Analytical solution of nonlinear reaction Eq. (11)using the TSM method. The steady-state nonlinear equation (11) can be written as follows:

$$S{\kern 1pt} ''(x){{\left[ {1 + S(x)} \right]}^{2}} = \delta {{\left[ {S(x)} \right]}^{2}}.$$
(A1)

By differentiating the above Eq. (A1) successively with respect to “x”, we get the following results.

$$\begin{gathered} S{\kern 1pt} '''(x){{\left[ {1 + S(x)} \right]}^{2}} + 2\left[ {1 + S(x)} \right]S{\kern 1pt} '(x)S{\kern 1pt} ''(x) \\ = \,\,2\delta S(x)S{\kern 1pt} '(x), \\ \end{gathered} $$
(A2)
$$\begin{gathered} S{\kern 1pt} ''''(x){{\left[ {1 + S(x)} \right]}^{2}} + 4S{\kern 1pt} '''(x)\left[ {1 + S(x)} \right]S{\kern 1pt} '(x) \\ + \,\,2{{(S{\kern 1pt} ''(x))}^{2}}\left[ {1 + S(x)} \right] + 2{{(S{\kern 1pt} '(x))}^{2}}S{\kern 1pt} ''(x) \\ = \,\,2\delta (S(x)S{\kern 1pt} ''(x) + {{(S{\kern 1pt} '(x))}^{2}}), \\ \end{gathered} $$
(A3)
$$\begin{gathered} S{\kern 1pt} '''''(x){{\left[ {1 + S(x)} \right]}^{2}} + 6S{\kern 1pt} ''''(x)S{\kern 1pt} '(x)\left[ {1 + S(x)} \right] \\ + \,\,12S{\kern 1pt} '''(x)S{\kern 1pt} ''(x)\left[ {1 + S(x)} \right] \\ + \,\,8S{\kern 1pt} '(x){{(S{\kern 1pt} ''(x))}^{2}} + 2{{(S{\kern 1pt} '(x))}^{2}}S{\kern 1pt} '''(x) \\ = \,\,6\delta S(x)S{\kern 1pt} ''(x) + 2\delta S(x)S{\kern 1pt} '''(x). \\ \end{gathered} $$
(A4)

The boundary condition (12) can be written as

$$S{\kern 1pt} '(0) = 0.$$
(A5)

Using this condition in the above Eqs. (A1) to (A4), we get

$$S{\kern 1pt} ''(0) = \frac{{\delta {{{(S(0))}}^{2}}}}{{{{{(S(0) + 1)}}^{2}}}},$$
(A6)
$$S{\kern 1pt} '''(0) = 0,$$
(A7)
$$S{\kern 1pt} ''''(0) = \frac{{2{{\delta }^{2}}{{{(S(0))}}^{3}}}}{{{{{(S(0) + 1)}}^{5}}}},$$
(A8)
$$S{\kern 1pt} '''''(0) = 0,$$
(A9)
$$S{\kern 1pt} ''''''(0) = \frac{{2{{\delta }^{3}}{{{(S(0))}}^{4}}\left[ {5 - 6S(0))} \right]}}{{{{{(S(0) + 1)}}^{8}}}}.$$
(A10)

The concentration of substrates using the Taylor series is

$$\begin{gathered} S(x) = S(0) + S{\kern 1pt} '(x)\frac{x}{{1!}} \\ + \,\,S{\kern 1pt} ''(x)\frac{{{{x}^{2}}}}{{2!}} + S{\kern 1pt} '''(x)\frac{{{{x}^{3}}}}{{3!}} + ...\,\,. \\ \end{gathered} $$
(A11)

Substituting Eqs. (A5) to (A10) into Eq. (A11), we obtain Eq. (19) in the text.

APPENDIX B

Analytical solution of nonlinear reaction Eq. (14)using the boundary conditions ((15) and (16)) by the modified Adomian decomposition method. In this Appendix, we indicate how Eq. (24) is derived. In order to solve Eq. (14) by means of the modified Adomian decomposition method [46]. We write Eq. (14) in the operator form

$$L\left( S \right) = \delta N(S),$$
(B1)

where \(L\) and \(N\) are linear and nonlinear terms of Eq. (14). Here, \(N(S) = {{\left( {\frac{S}{{1 + S}}} \right)}^{2}}.\) The operator for spherical substratum is defined as [46]

$$L(.) = {{x}^{{ - 1}}}\frac{d}{{dx}}{{x}^{0}}\frac{d}{{dx}}{{x}^{1}}(.).$$
(B2)

Applying the inverse operator [46]

$${{L}^{{ - 1}}}(.) = {{x}^{{ - 1}}}\int\limits_1^{x - m} {{{x}^{0}}} \int\limits_0^x {x(.)} dxdx,$$
(B3)

on both sides of Eq. (B1) yields

$$S\left( x \right) = Ax + B + \delta {{L}^{{ - 1}}}{{\left( {\frac{S}{{1 + S}}} \right)}^{2}},$$
(B4)

where \(A\) and \(B\) are constants of integration. Let

$$S\left( x \right) = \sum\limits_{i = 0}^\infty {{{S}_{i}}} \left( x \right),$$
(B5)
$$N\left( {S(x)} \right) = \sum\limits_{i = 0}^\infty {{{A}_{i}}} .$$
(B6)

In view of Eqs. (B4) to (B6) gives

$$\sum\limits_{i = 0}^\infty {{{S}_{i}}\left( x \right)} = Ax + B + \delta {{L}^{{ - 1}}}\sum\limits_{i = 0}^\infty {{{A}_{i}}} .$$
(B7)

The zero elements is defined as

$${{S}_{0}}\left( x \right) = Ax + B,$$
(B8)

and the remaining components as the recurrence relation \({{S}_{{i + 1}}}\left( x \right) = \delta {{L}^{{ - 1}}}{{A}_{i}},\) \(i \geqslant 0\)

where \({{A}_{i}}(x) = \frac{1}{{i!}}\frac{{{{d}^{i}}}}{{d{{\lambda }^{i}}}}N\)\({{\left( {\sum\limits_{n = 0}^\infty {{{\lambda }^{i}}{{S}_{i}}} } \right)}_{{\lambda = 0}}}\) are the Adomian polynomials of \({{S}_{1}},{{S}_{2}},...{{S}_{i}}\). We can find \({{A}_{i}}\) as follows:

$${{A}_{0}} = N\left( {{{S}_{0}}} \right) = {{\left( {\frac{{{{S}_{0}}}}{{1 + {{S}_{0}}}}} \right)}^{2}},$$
(B9)
$${{A}_{1}} = {{\left[ {\frac{d}{{d\lambda }}N\left( {{{S}_{0}} + \lambda {{S}_{1}}} \right)} \right]}_{{\lambda = 0}}} = \frac{{2{{S}_{0}}{{S}_{1}}}}{{{{{(1 + {{S}_{0}})}}^{3}}}}.$$
(B10)

The remaining polynomials can be easily generated and so on

$${{S}_{0}}(x) = {{S}_{L}},$$
(B11)
$${{S}_{1}}(x) = \frac{\delta }{6}{{\left( {\frac{{{{S}_{L}}}}{{1 + {{S}_{L}}}}} \right)}^{2}}\left[ {{{{(x - m)}}^{2}} - 1} \right],$$
(B12)
$$\begin{gathered} {{S}_{2}}(x) = \frac{{{{\delta }^{2}}S_{L}^{3}}}{{3{{{(1 + {{S}_{L}})}}^{5}}}}\left[ {\frac{{{{x}^{4}}}}{{20}} - \frac{{m{{x}^{3}}}}{6} + \frac{{({{m}^{2}} - 1){{x}^{2}}}}{6}} \right. \\ \left. { - \,\,\frac{{({{m}^{2}} - 10)mx}}{{30}} - \frac{{({{m}^{4}} + 8{{m}^{2}} + 2m - 7)}}{{60}}} \right]. \\ \end{gathered} $$
(B13)

Adding Eqs. (B11) to (B13), we get the concentration of substrate in the biofilm (Eq. (24)).

NOTATION

L f

biofilm thickness, m

S f

concentration of substrate in the biofilm, g/m3

S 1

concentration of substrate outside the biofilm, g/m3

D f

diffusion coefficient within the biofilm, m2/s

z

distance from biofilm, m

ψ

flux of substrate, g/m2 d

b

microbial death constant, m3/g d

K

Michaelis-Menten constant, g/m3

X f

position of an occupied grid cell above the substratum within the grid, g/m3

q

rate constant of substrate consumption, d–1

Y

yield per unit amount of substrate consumed in biofilm, g/m3

R

radius of the sphere, m

S

dimensionless concentration of substrate in the biofilm

S L

dimensionless concentration of substrate outside the biofilm

x

dimensionless distance from the biofilm

δ

dimensionless biofilm thickness

m

dimensionless constant

SUBSCRIPTS AND SUPERSCRIPTS

f

film

L, 1

solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyabarathi, P., Kannan, M. & Rajendran, L. Approximate Analytical Solutions of Biofilm Reactor Problem in Applied Biotechnology. Theor Found Chem Eng 55, 851–861 (2021). https://doi.org/10.1134/S0040579521050213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521050213

Keywords:

Navigation