Skip to main content
Log in

Phytoremediation of Soils Contaminated by Copper Smelting in Chile: Results of a Decade of Research

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

This article summarizes the authors’ 10-year study of soil phytoremediation in an anthropogenically contaminated area around a copper smelter in the Valparaiso region of central Chile. It analyzes the risk that contaminated soils pose to public health. Phytostabilization and phytoextraction were considered as the main methods of soil phytoremediation. A study conducted in an industrially contaminated area around a copper smelter found that the application of soil amendments eliminated the factors that inhibited plant growth and allowed for natural regeneration. It was also demonstrated that a single application of a soil amendment (lime or a mixture of lime and compost) was sufficient to establish a stable, self-sustaining ecosystem that was maintained for at least six years. Our study also found that the main disadvantage of the phytoextraction method, which is the long time required to remove the metal from the soil, makes it unfeasible in Chile given the absence of copper hyperaccumulator plants in this country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. L. Vorobeichik and S. Yu. Kaigorodova, “Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission,” Eurasian Soil Sci. 50, 977–990 (2017). https://doi.org/10.1134/s1064229317080130

    Article  Google Scholar 

  2. G. M. Kashulina, “Extreme pollution of soils by emissions of the copper-nickel industrial complex in the Kola Peninsula,” Eurasian Soil Sci. 50, 837–849 (2017). https://doi.org/10.1134/s1064229317070031

    Article  Google Scholar 

  3. G. N. Koptsik, “Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review,” Eurasian Soil Sci. 47, 923–939 (2014). https://doi.org/10.1134/s1064229314090075

    Article  Google Scholar 

  4. G. N. Koptsik, “Modern approaches to remediation of heavy metal polluted soils: a review,” Eurasian Soil Sci. 47, 707–722 (2014). https://doi.org/10.1134/s1064229314070072

    Article  Google Scholar 

  5. G. N. Koptsik, S. V. Koptsik, and I. E. Smirnova, “Efficiency of remediation of technogenic barrens around the Pechenganikel works in the Kola Subarctic,” Eurasian Soil Sci. 47, 519–528 (2014). https://doi.org/10.1134/s1064229314050081

    Article  Google Scholar 

  6. G. N. Koptsik, S. V. Koptsik, and I. E. Smirnova, “Alternative technologies for remediation of technogenic barrens in the Kola Subarctic,” Eurasian Soil Sci. 49, 1294–1309 (2016). https://doi.org/10.1134/s1064229316090088

    Article  Google Scholar 

  7. I. V. Lyanguzova, “Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes,” Russ. J. Ecol. 48, 311–320 (2017).

    Article  Google Scholar 

  8. A. S. Yakovlev, I. O. Plekhanova, S. V. Kudryashov, and R. A. Aimaletdinov, “Assessment and regulation of the ecological state of soils in the impact zone of mining and metallurgical enterprises of Norilsk Nickel Company,” Eurasian Soil Sci. 41, 648–659 (2008).

    Article  Google Scholar 

  9. A. Baker and R. Brooks, “Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry,” Biorecovery 1, 81–126 (1989).

    Google Scholar 

  10. M. Berasaluce, P. Mondaca, M. Schuhmacher, M. Bravo, S. Sauvé, C. Navarro-Villarroel, E. A. Dovletyarova, and A. Neaman, “Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile,” J. Trace Elem. Med. Biol. 54, 156–162 (2019).

    Article  Google Scholar 

  11. R. Bienes, M. J. Marques, B. Sastre, A. García-Díaz, and M. Ruiz-Colmenero, “Eleven years after shrub revegetation in semiarid eroded soils. Influence in soil properties,” Geoderma 273, 106–114 (2016).

    Article  Google Scholar 

  12. J. Bierkens, M. van Holderbeke, C. Cornelis, and R. Torfs, “Exposure through soil and dust ingestion,” in Dealing with Contaminated Sites, Ed. by F. A. Swartjes (Springer-Verlag, Dordrecht, 2011), pp. 261–286. https://doi.org/10.1007/978-90-481-9757-6_6

  13. E. J. Calabrese, R. Barnes, E. J. Stanek, H. Pastides, C. E. Gilbert, P. Veneman, X. Wang, A. Lasztity, and P. T. Kostecki, “How much soil do young children ingest: an epidemiologic study,” Regul. Toxicol. Pharmacol. 10, 123–137 (1989).

    Article  Google Scholar 

  14. J. Chang, P. Ciais, N. Viovy, J.-F. Soussana, K. Klumpp, and B. Sultan, “Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance,” Carbon Balance Manage. 12, 11 (2017).

    Article  Google Scholar 

  15. S. Córdova, A. Neaman, I. González, R. Ginocchio, and P. Fine, “The effect of lime and compost amendments on the potential for the revegetation of metal-polluted, acidic soils,” Geoderma 166, 135–144 (2011).

    Article  Google Scholar 

  16. J. H. Duffus, “Heavy metals” a meaningless term? (IUPAC Technical Report),” Pure Appl. Chem. 74, 793–807 (2002).

    Article  Google Scholar 

  17. C. U. Emenike, B. Jayanthi, P. Agamuthu, and S. H. Fauziah, “Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil,” Environ. Rev. 26, 156–168 (2018).

    Article  Google Scholar 

  18. R. Ginocchio, “Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile,” Chemosphere 41, 15–23 (2000).

    Article  Google Scholar 

  19. I. González, V. Muena, M. Cisternas, and A. Neaman, “Copper accumulation in a plant community affected by mining contamination in Puchuncavi valley, central Chile,” Rev. Chilena Hist. Nat. 81, 279–291 (2008).

    Google Scholar 

  20. I. González, A. Neaman, A. Cortés, and P. Rubio, “Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils,” Chemosphere 95, 111–115 (2014).

    Article  Google Scholar 

  21. ISO 11268-2. Soil Quality—Effects of Pollutants on Earthworms—Part 2: Determination of Effects on Reproduction of Eisenia fetida/Eisenia andrei (International Organization for Standardization, Geneva, 2012), p. 21.

  22. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  23. L. Ivanova, M. Slukovskaya, I. Kremenetskaya, S. Alekseeva, and A. Neaman, “Ornamental plant cultivation using vermiculite-lizardite mining waste in the industrial zone of the Subarctic,” in Proceedings of the Smart and Sustainable Cities Conf. “Green Technologies and Infrastructure to Enhance Urban Ecosystem Services,” Ed. by V. Vasenev, et al. (Springer-Verlag, Dordrecht, 2020), pp. 199–204.

  24. L. Y. Jiang, X. E. Yang, and Z. L. He, “Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens,” Chemosphere 55, 1179–1187 (2004).

    Article  Google Scholar 

  25. M. V. Kozlov and E. L. Zvereva, “Industrial barrens: extreme habitats created by non-ferrous metallurgy,” Rev. Environ. Sci. Bio/Technol. 6, 231–259 (2007).

    Article  Google Scholar 

  26. C. S. Lwin, B. H. Seo, H. U. Kim, G. Owens, and K. R. Kim, “Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review,” Soil Sci. Plant Nutr. 64, 156–167 (2018).

    Article  Google Scholar 

  27. A. Mahar, P. Wang, A. Ali, M. K. Awasthi, A. H. Lahori, Q. Wang, R. H. Li, and Z. Q. Zhang, “Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review,” Ecotoxicol. Environ. Saf. 126, 111–121 (2016).

    Article  Google Scholar 

  28. S. Meier, M. Alvear, F. Borie, P. Aguilera, R. Ginocchio, and P. Cornejo, “Influence of copper on root exudate patterns in some metallophytes and agricultural plants,” Ecotoxicol. Environ. Saf. 75, 8–15 (2012).

    Article  Google Scholar 

  29. M. Mench, J. Vangronsveld, C. Beckx, and A. Ruttens, “Progress in assisted natural remediation of an arsenic contaminated agricultural soil,” Environ. Pollut. 144, 51–61 (2006).

    Article  Google Scholar 

  30. Decreto 28. Establece Norma de Emisión Para Fundiciones de Cobre y Fuentes Emisoras de Arsénico (Ministerio del Medio Ambiente, Santiago, 2013), p. 11. https://www.leychile.cl/Navegar?idNorma=1057059.

  31. A. Neaman, S. Huerta, and S. Sauvé, “Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the Puchuncaví Valley, Chile,” Ecotoxicol. Environ. Saf. 80, 386–392 (2012).

    Article  Google Scholar 

  32. F. M. Padilla, J. d. D. Miranda, C. Armas, and F. I. Pugnaire, “Effects of changes in rainfall amount and pattern on root dynamics in an arid shrubland,” J. Arid Environ. 114, 49–53 (2015).

    Article  Google Scholar 

  33. J. Pardo, P. Mondaca, J. L. Celis-Diez, R. Ginocchio, C. Navarro-Villarroel, and A. Neaman, “Assessment of revegetation of an acidic metal(loid)-polluted soils six years after the incorporation of lime with and without compost,” Geoderma 331, 81–86 (2018).

    Article  Google Scholar 

  34. A. Pérez de Mora, P. Madejón, P. Burgos, F. Cabrera, N. W. Lepp, and E. Madejón, “Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks,” Environ. Pollut. 159, 3018–3027 (2011).

    Article  Google Scholar 

  35. J. Rachou, C. Gagnon, and S. Sauvé, “Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices,” Environ. Chem. 4, 90–97 (2007).

    Article  Google Scholar 

  36. R. D. Reeves, A. J. M. Baker, T. Jaffre, P. D. Erskine, G. Echevarria, and A. van der Ent, “A global database for plants that hyperaccumulate metal and metalloid trace elements,” New Phytol. 218, 407–411 (2018).

    Article  Google Scholar 

  37. B. H. Robinson, C. W. N. Anderson, and N. M. Dickinson, “Phytoextraction: Where’s the action?” J. Geochem. Explor. 151, 34–40 (2015).

    Article  Google Scholar 

  38. I. N. Semenova, Y. S. Rafikova, R. F. Khasanova, and Y. T. Suyundukov, “Analysis of metal content in soils near abandoned mines of Bashkir Trans-Urals and in the hair of children living in this territory,” J. Trace Elem. Med. Biol. 50, 664–670 (2018).

    Article  Google Scholar 

  39. H. Skröder, M. Kippler, B. Nermell, F. Tofail, M. Levi, S. M. Rahman, R. Raqib, and M. Vahter, “Major limitations in using element concentrations in hair as biomarkers of exposure to toxic and essential trace elements in children,” Environ. Health Perspect. 125, 067021 (2017).

    Article  Google Scholar 

  40. M. Slukovskaya, I. Kremenetskaya, S. Drogobuzhskaya, L. Ivanova, I. Mosendz, and A. Novikov, “Serpentine mining wastes-materials for soil rehabilitation in Cu-Ni polluted wastelands,” Soil Sci. 183, 141–149 (2018).

    Article  Google Scholar 

  41. M. V. Slukovskaya, V. I. Vasenev, K. V. Ivashchenko, D. V. Morev, S. V. Drogobuzhskaya, L. A. Ivanova, and I. P. Kremenetskaya, “Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu–Ni atmospheric pollution,” Int. Soil Water Conserv. Res. 7, 297–307 (2019).

    Article  Google Scholar 

  42. J. Tapia-Gatica, I. González-Miranda, E. Salgado, M. A. Bravo, C. Tessini, E. A. Dovletyarova, A. A. Paltseva, and A. Neaman, “Advanced determination of the spatial gradient of human health risk and ecological risk from exposure to As, Cu, Pb, and Zn in soils near the Ventanas Industrial Complex (Puchuncaví, Chile),” Environ. Pollut. 258, 113488 (2020).

    Article  Google Scholar 

  43. E. Terzaghi, M. Morselli, M. Semplice, B. E. L. Cerabolini, K. C. Jones, M. Freppaz, and A. Di Guardo, “SoilPlusVeg: an integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests,” Sci. Total Environ. 595, 169–177 (2017).

    Article  Google Scholar 

  44. G. M. Tordoff, A. J. M. Baker, and A. J. Willis, “Current approaches to the revegetation and reclamation of metalliferous mine wastes,” Chemosphere 41, 219–228 (2000).

    Article  Google Scholar 

  45. C. Ulriksen, R. Ginocchio, M. Mench, and A. Neaman, “Lime and compost promote plant re-colonization of metal-polluted, acidic soils,” Int. J. Phytoremed. 14, 820–833 (2012).

    Article  Google Scholar 

  46. Risk Assessment Guidance for Superfund Vol. 1: Human Health Evaluation Manual, Part A, Ch. 8: Risk Characterization Office of Emergency and Remedial Response (US Environmental Protection Agency, Washington, DC, 1989), p. 31.

  47. Exposure Factors Handbook (US Environmental Protection Agency, Washington, DC, 2011).

  48. L. van Nevel, J. Mertens, K. Oorts, and K. Verheyen, “Phytoextraction of metals from soils: How far from practice?” Environ. Pollut. 150, 34–40 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.V. Slukovskaya, G.N. Koptsik, and two anonymous reviewers for their valuable comments. The authors also thank A.L. Savrova for editing the Russian text and A.A. Tchourakov for editing the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neaman.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neaman, A., Yáñez, C. Phytoremediation of Soils Contaminated by Copper Smelting in Chile: Results of a Decade of Research. Eurasian Soil Sc. 54, 1967–1974 (2021). https://doi.org/10.1134/S1064229321120085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321120085

Keywords:

Navigation