Skip to main content
Log in

Humic Substances: Hypotheses and Reality (a Review)

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The term humic substances (HS) refers to a group of heterogeneous, dark-colored polydisperse substances found in soils, peats, natural waters, and sediments. It is hypothesized that HSs are formed as a result of degradation and transformation of biomolecules of organic residues and free radical condensation reactions (a process called humification). Humic substances are classified as a special category of natural compounds that are dissimilar to the biomolecules of plant and microbial tissues, and are resistant to biodegradation. On the basis of their solubility in alkalis, HSs are divided into humic acids (HAs, soluble, precipitated at pH < 2), fulvic acids (FAs, soluble at all pH values), and humin (insoluble residue). The review provides a critical analysis of the HS terminology and nomenclature, the method of extraction of HS from natural objects, and the hypotheses describing their formation. The ambiguity and duality of the concept of HSs (specific compounds and the sum of operational fractions) are demonstrated, as well as an arbitrary character of the division of organic matter (OM) into the dark-colored compounds of poorly defined structure (HSs) and the substances with a known structure (non-HSs). The interpretation of HSs as mass products of a secondary synthesis requires revision. The possibility of extracellular free radical reactions in soils leaves no doubt; however, a quantitative contribution of the corresponding products to the natural OM has not been established yet. The traditional alkaline extraction should be considered as a method for isolation of hydrophilic polar substances, while the precipitation with acid as their concentration for further analysis. The historical names of humic fractions (HAs, FAs, and humin) should be retained as well-established generic terms and names of the preparations obtained in a certain way without attaching unique features and specificity to all components of these fractions. The CHA/CFA (or CHA/Corg) ratios are simple and convenient indicators of the types of humus reflecting bioclimatic conditions of its formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. N. Aleksandrova, Soil Organic Matter and Processes of Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. V. I. Bogdan, Ya. E. Sergeeva, V. V. Lunin, I. V. Perminova, A. I. Konstantinov, G. E. Zinchenko, and K. V. Bogdan, “Bioconversion of phenolic monomers of lignin and lignin-containing substrates by the basidiomycete Lentinus tigrinus,” Appl. Biochem. Microbiol. 54, 198–205 (2018).

    Article  Google Scholar 

  3. S. A. Waksman, Humus: Origin, Chemical Composition, and Importance in Nature (Williams and Wilkins Company, Baltimore, 1936).

    Google Scholar 

  4. M. I. Dergacheva, The System of Soil Humic Substances: Spatial and Temporal Aspects (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  5. A. G. Zavarzina, M. S. Ermolin, V. V. Demin, and P. S. Fedotov, “Interaction of the mixture of phenolic acids with modified kaolinite under batch and dynamic conditions,” Eurasian Soil Sci. 51, 938–946 (2018). https://doi.org/10.1134/S1061934819080070

    Article  Google Scholar 

  6. A. G. Zavarzina, M. S. Ermolin, V. V. Demin, and P. S. Fedotov, “The effect of acetic acid and acetate ions on sorption–desorption of a mixture of phenolic acids by modified kaolinite,” Eurasian Soil Sci. 53, 1046–1055 (2020). https://doi.org/10.1134/S1064229320080177

    Article  Google Scholar 

  7. A. G. Zavarzina, E. G. Kravchenko, A. I. Konstantinov, I. V. Perminova, S. N. Chukov, and V. V. Demin, “Comparison of the properties of humic acids extracted from soils by alkali in the presence and absence of oxygen,” Eurasian Soil Sci. 52, 880–892 (2019).

    Article  Google Scholar 

  8. A. G. Zavarzina, T. A. Semenova, O. V. Belova, A. V. Lisov, A. A. Leontievskii, and A. E. Ivanova, “Laccase production and humic acids decomposition by microscopic soil fungi,” Microbiology (Moscow) 87, 308–316 (2018).

    Article  Google Scholar 

  9. N. V. Zagoskina, T. N. Nikolaeva, P. V. Lapshin, A. A. Zavarzin, and A. G. Zavarzina, “Water-soluble phenolic compounds in lichens,” Microbiology (Moscow) 82, 445–452 (2013).

    Article  Google Scholar 

  10. M. N. Zaprometov, Phenolic Compounds: Distribution, Metabolism, and Functions in Plants (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  11. D. G. Zvyagintsev and T. G. Mirchink, “Nature of soil humic acids,” Pochvovedenie, No. 5, 68–75 (1986).

    Google Scholar 

  12. A. L. Ivanov, B. M. Kogut, V. M. Semenov, M. Tyurina-Oberlander, and N. Waksman Shanbakher, “The development of theory on humus and soil organic matter: from Turin and Waksman to present days,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 90, 3–38 (2017). https://doi.org/10.19047/0136-1694-2017-90-3-38

    Article  Google Scholar 

  13. N. O. Kovaleva and I. V. Kovalev, “Transformation of lignin in surface and buried soils of mountainous landscapes,” Eurasian Soil Sci. 42, 1270–1281 (2009).

    Article  Google Scholar 

  14. B. M. Kogut, V. M. Semenov, Z. S. Artemyeva, and N. N. Danchenko, “Dehumification and soil carbon sequestration,” Agrokhimiya, No. 5, 3–13 (2021).

    Google Scholar 

  15. M. M. Kononova, Soil Organic Matter (Academy of Sciences of the USSR, Moscow, 1963) [in Russian].

    Google Scholar 

  16. M. M. Kononova, Soil Humus and Its Modern Studies (Academy of Sciences of the USSR, Moscow, 1951) [in Russian].

    Google Scholar 

  17. P. V. Krasilnikov, “Stable carbon compounds in soils: their origin and functions,” Eurasian Soil Sci. 48, 997–1008 (2015).

    Article  Google Scholar 

  18. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley, Weinheim, 1995; Nauka, Novosibirsk, 1998).

  19. A. V. Lisov, A. G. Zavarzina, O. V. Belova, and A. A. Leontievsky, “Humic acid transformation by the fungus Cerrena unicolor growing on cellulose and glucose,” Microbiology (Moscow) 89, 287–293 (2020).

    Article  Google Scholar 

  20. D. S. Orlov, “Humic substances in the biosphere,” Sorosovskii Obraz. Zh., No. 2, 56–63 (1997).

  21. D. S. Orlov, Soil Humic Acids and a General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  22. D. S. Orlov, Soil Humic Acids (Moscow State Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  23. D. S. Orlov, “Soil fulvic acids: history of study, importance, and reality,” Eurasian Soil Sci. 32 (9), 1044–1049 (1999).

    Google Scholar 

  24. D. S. Orlov, Soil Chemistry (Moscow State Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  25. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter of Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  26. D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Moscow State Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  27. I. V. Perminova, “Humic substances: challenges to chemists of 21st century,” Khim. Zhizn’ XXI Vek, No. 1, 50–55 (2008).

    Google Scholar 

  28. M. L. Rabinovich, A. V. Bolobova, and V. I. Kondrashchenko, Theory of Biotechnology of Wood Composites, Book 1: Wood and Wood-Decomposing Fungi (Nauka, Moscow, 2001) [in Russian].

  29. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  30. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review,” Eurasian Soil Sci. 46, 355–368 (2013).

    Article  Google Scholar 

  31. I. V. Tyurin, Soil Organic Matter and Its Role in Pedogenesis and Soil Fertility (Sel’khozgiz, Moscow, 1937) [in Russian].

    Google Scholar 

  32. I. V. Tyurin, Soil Organic Matter and Its Role in Soil Fertility (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  33. G. N. Fedotov and S. A. Shoba, “Effect of structural transition in the humic gel matrix on some properties of soils,” Dokl. Chem. 457, 122–125 (2014).

    Article  Google Scholar 

  34. G. N. Fedotov and S. A. Shoba, “Current ideas on the possible pathways for the formation of humic substances in soils,” Eurasian Soil Sci. 46, 1263–1270 (2015).

    Article  Google Scholar 

  35. H. von Staudinger, Die Hochmolekularen Organischen Verbindungen: Kautschuk und Cellulose (Springer-Verlag, Berlin, 1932; Khimteoret, Leningrad, 1935).

  36. G. R. Aiken, “Isolation and concentration techniques for aquatic humic substances,” in Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization Ed. by G. R. Aiken, (Wiley, New York, 1985), pp. 363–385.

    Google Scholar 

  37. L. N. Alexandrova, T. Th. Arshavskay, F. M. Dorfman, M. F. Lyuzin, and O. V. Yurlova, “Humus acids and their organo-mineral derivatives in soil,” Int. Soil Sci. Congr. Trans. 3 (9), 143–152 (1968).

  38. S. D. Allison, “Brown ground: a soil carbon analogue for the green world hypothesis?” Am. Nat. 167 (5), 619–627 (2006). https://doi.org/10.1086/503443

    Article  Google Scholar 

  39. W. Amelung, S. Brodowski, A. Sandhage-Hofmann, and R. Bol, “Combining biomarker with stable isotope analysis for assessing the transformation and turnover of soil organic matter,” in Advances in Agronomy (Elsevier, Amsterdam, 2008), Vol. 100, Ch. 6, pp. 155–250. https://doi.org/10.1016/S0065-2113(08)00606-8

  40. G. Angst, K. E. Mueller, K. G. J. Nierop, and M. J. Simpson, “Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter,” Soil Biol. Biochem. 156, 108189 (2021). https://doi.org/10.1016/j.soilbio.2021.108189

    Article  Google Scholar 

  41. V. Arantes and B. Goodell, “Current understanding of brown-rot fungal biodegradation mechanisms: a review,” in Deterioration and Protection of Sustainable Biomaterials ACS Symp. Ser. 1158 (American Chemical Society, Washington, DC, 2014), Ch. 1, pp. 3–21. https://doi.org/10.1021/bk-2014-1158.ch001

  42. R. Baigorri, M. Fuentes, G. González-Gaitano, and J. M. García-Mina, “Simultaneous presence of diverse molecular patterns in humic substances in solution,” J. Phys. Chem B 111, 10577–10582 (2007.

    Article  Google Scholar 

  43. J. A. Baldock and K. Broos, “Soil organic matter,” in Handbook of Soil Sciences: Properties and Processes (CRC Press, Boca Raton, FL, 2011), pp. 11.11–11.52.

    Google Scholar 

  44. N. H. Batjes, “Total carbon and nitrogen in the soils of the world,” Eur. J. Soil Sci. 65, 4–21 (2014). https://doi.org/10.1111/ejss.12114_2

    Article  Google Scholar 

  45. Ph. C. Baveye and M. Wander, “The (bio)chemistry of soil humus and humic substances: why is the “New view” still considered novel after more than 80 years?” Front. Environ. Sci. 7, 27 (2019). https://doi.org/10.3389/fenvs.2019.00027

    Article  Google Scholar 

  46. R. P. Beckett, A. G. Zavarzina, and C. Liers, “Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover,” Fungal Biol. 117, 431–438 (2013). https://doi.org/10.1016/j.funbio.2013.04.007

    Article  Google Scholar 

  47. J. M. Bollag, S. Y. Liu, and R. D. Minard, “Enzymatic oligomerization of vanillic acid,” Soil Biol. Biochem. 14, 157–163 (1982).

    Article  Google Scholar 

  48. N. C. Brady and R. R. Weil, Nature and Properties of Soils (Prentice Hall, Upper Saddle River, NJ, 2008).

    Google Scholar 

  49. J. Burdon, “Are the traditional concepts of the structures of humic substances realistic?” Soil Sci. 166, 752–769 (2001).

    Article  Google Scholar 

  50. R. G. Burns, J. L. DeForest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub, and A. Zoppini, “Soil enzymes in a changing environment: current knowledge and future directions,” Soil Biol. Biochem. 58, 216–234 (2013).

    Article  Google Scholar 

  51. X. Cao and K. Schmidt-Rohr, “Abundant nonprotonated aromatic and oxygen-bonded carbons make humic substances distinct from biopolymers,” Environ. Sci. Technol. Lett. 5, 476–480 (2018). https://doi.org/10.1021/acs.estlett.8b00107

    Article  Google Scholar 

  52. X. Cao, D. C. Olk, M. Chappell, C. A. Cambardella, L. F. Miller, and J. Mao, “Solid-state NMR analysis of soil organic matter fractions from integrated physical-chemical extraction,” Soil Sci. Soc. Am. J. 75, 1374–1384 (2011). https://doi.org/10.2136/sssaj2010.0382

    Article  Google Scholar 

  53. B. Chefetz, P. G. Hatcher, Y. Hadar, and Y. Chen, “Chemical and biological characterization of organic matter during composting of municipal solid waste,” J. Environ. Qual. 25 (4), 776–785 (1996). https://doi.org/10.2134/jeq1996.00472425002500040018x

    Article  Google Scholar 

  54. A.-M. Chiorcea-Paquim, T. A. Enache, E. De Souza Gil, and A. M. Oliveira-Brett, “Natural phenolic antioxidants electrochemistry: towards a new food science methodology,” Compr. Rev. Food Sci. Food Saf. 19, 1680–1726 (2020). https://doi.org/10.1111/1541-4337.12566

    Article  Google Scholar 

  55. M. De Nobili, C. Bravo, and Y. Chen, “The spontaneous secondary synthesis of soil organic matter components: a critical examination of the soil continuum model theory,” Appl. Soil Ecol. 154, 103655 (2020). https://doi.org/10.1016/j.apsoil.2020.103655

    Article  Google Scholar 

  56. N. DiDonato, H. Chen, D. Waggoner, and P. G. Hatcher, “Potential origin and formation for molecular components of humic acids in soils,” Geochim. Cosmochim. Acta 178, 210–222 (2016). https://doi.org/10.1016/j.gca.2016.01.013

    Article  Google Scholar 

  57. S. Doerr, C. Santín, A. Merino, C. M. Belcher, and G. Baxter, “Fire as a removal mechanism of pyrogenic carbon from the environment: effects of fire and pyrogenic carbon characteristics,” Front. Earth Sci. 6, 127 (2018). https://doi.org/10.3389/feart.2018.00127

    Article  Google Scholar 

  58. S. Dou, J. Shan, X. Song, R. Cao, M. Wu, Ch. Li, and S. Guan, “Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness,” Pedosphere 30 (2), 159–167 (2020). https://doi.org/10.1016/S1002-0160(20)60001-7

    Article  Google Scholar 

  59. M. Drosos, M. Jerzykiewicz, M. Louloudi, and Y. Deligiannakis, “Progress towards synthetic modelling of humic acid: peering into the physicochemical polymerization mechanism,” Colloids Surf., A 389, 254–265 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.016

    Article  Google Scholar 

  60. J. R. Ertel and J. I. Hedges, “The lignin component of humic substances: distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions,” Geochim. Cosmochim. Acta 48 (10), 2065–2074 (1984). https://doi.org/10.1016/0016-7037(84)90387-9

    Article  Google Scholar 

  61. M. R. Esfahani, H. A. Stretz, and M. J. M. Wells, “Abiotic reversible self-assembly of fulvic and humic acid aggregates in low electrolytic conductivity solutions by dynamic light scattering and zeta potential investigation,” Sci. Total Environ. 537, 81–92 (2015).

    Article  Google Scholar 

  62. W. Flaig, H. Beutelspacher, and E. Rietz, “Chemical composition and physical properties of humic substances,” in Soil Components, Vol. 1: Organic Components (Springer-Verlag, New York, 1975), pp. 1–211.

  63. N. Fujitake, D. Asakawa, and Y. Yanagi, “Characterization of soil humic acids by 13C NMR spectroscopy and high performance size exclusion chromatography (HPSEC),” Bunseki Kagaku 61, 287–298 (2012).

    Article  Google Scholar 

  64. J. Gerke, “Concepts and misconceptions of humic substances as the stable part of soil organic matter: a review,” Agronomy 8 (5), 76 (2018). https://doi.org/10.3390/agronomy8050076

    Article  Google Scholar 

  65. N. N. Gessler, A. S. Egorova, and T. A. Belozerskaya, “Melanin pigments of fungi under extreme environmental conditions (Review),” Appl. Biochem. Microbiol. 50 (2), 105–113 (2014).

    Article  Google Scholar 

  66. E. Giannakopoulos, M. Drosos, and Y. Deligiannakis, “A humic-acid-like polycondensate produced with no use of catalyst,” J. Colloid Interface Sci. 336, 59–66 (2009). https://doi.org/10.1016/j.jcis.2009.03.037

    Article  Google Scholar 

  67. G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Oxford University Press, Oxford, 2013).

    Google Scholar 

  68. B. Glaser, L. Haumaier, G. Guggenberger, and W. Zech, “The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics,” Naturwissenschaften 88, 37–41 (2001).

    Article  Google Scholar 

  69. V. Gómez-Toribio, A. B. García-Martín, M. J. Martínez, A. T. Martínez, and F. Guillén, “Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal,” Appl. Environ. Microbiol. 75, 3954–3962 (2009).

    Article  Google Scholar 

  70. T. Grinhut, Y. Hadar, and Y. Chen, “Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms,” Fungal Biol. Rev. 21 (4), 179–189 (2007). https://doi.org/10.1016/j.fbr.2007.09.003

    Article  Google Scholar 

  71. T. Grinhut, T. M. Salame, Y. Chen, and Y. Hadar, “Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp.,” Appl. Microbiol. Biotechnol. 91, 1131–1140 (2011). https://doi.org/10.1007/s00253-011-3300-9

    Article  Google Scholar 

  72. G. Guggenberger and W. Zech, “Dissolved organic carbon in forest floor leachates: simple degradation products or humic substances?” Sci. Total Environ. 152, 37–47 (1994). https://doi.org/10.1016/0048-9697(94)90549-5

    Article  Google Scholar 

  73. J. P. Gustafsson, “Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model,” J. Colloid Interface Sci. 244, 102–112 (2001). https://doi.org/10.1006/jcis.2001.7871

    Article  Google Scholar 

  74. K. Haider, L. R. Frederick, and W. Flaig, “Reactions between amino acid compounds and phenols during oxidation,” Plant Soil 22, 49–64 (1965).

    Article  Google Scholar 

  75. G. R. Harvey, D. A. Boran, L. A. Chesal, and J. M. Tokar, “The structure of marine fulvic and humic acids,” Mar. Chem. 12, 119–132 (1983).

    Article  Google Scholar 

  76. G. R. Harvey, D. A. Boran, S. R. Piotrowicz, and C. P. Weisel, “Synthesis of marine humic substances from unsaturated lipids,” Nature 309, 244–246 (1984).

    Article  Google Scholar 

  77. P. G. Hatcher, M. Schnitzer, L. W. Dennis, and G. E. Maciel, “Aromaticity of humic substances in soils,” Soil Sci. Soc. Am. J. 45, 1089–1094 (1981).

    Article  Google Scholar 

  78. M. H. B. Hayes, “Solvent systems for the isolation of organic components from soils,” Soil Sci. Soc. Am. J. 70, 986–994 (2006).

    Article  Google Scholar 

  79. M. H. B. Hayes and C. E. Clapp, “Humic substances: considerations of compositions, aspects of structure, and environmental influences,” Soil Sci. 166, 723–737 (2001).

    Article  Google Scholar 

  80. M. H. B. Hayes, R. Mylotte, and R. S. Swift, “Humin: its composition and importance in soil organic matter,” in Advances in Agronomy (Elsevier, Amsterdam, 2017), Vol. 143, Ch., pp. 47–138. https://doi.org/10.1016/bs.agron.2017.01.001

  81. M. H. B. Hayes and R. S. Swift, “An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances,” J. Soils Sediments 18 (4), 1212–1231 (2018). https://doi.org/10.1007/s11368-016-1636-6

    Article  Google Scholar 

  82. M. H. B. Hayes and R. S. Swift, “The chemistry of soil organic colloids,” in The Chemistry of Soil Constituents (Wiley, Chichester, 1978), pp. 179–320.

    Google Scholar 

  83. M. H. B. Hayes and R. S. Swift, “Vindication of humic substances as a key component of organic matter in soil and water,” in Advances in Agronomy (Elsevier, Amsterdam, 2020), Vol. 163, Ch. 1, pp. 1–37. https://doi.org/10.1016/bs.agron.2020.05.001

  84. M. H. B. Hayes, R. S. Swift, C. M. Byrne, G. Song, and A. J. Simpson, “Humin: the simplest of the humic substances?” in Proceedings of the 15th Meeting of the International Humic Substances Society “Advances in Natural Organic Matter and Humic Substances Research 2008-2010,” June 27–July 2, 2010 (Puerto de La Cruz, 2010), Vol. 1, pp. 64–68.

  85. J. I. Hedges, G Eglinton, P. G. Hatcher, D. L. Kirchman, C. Arnosti, S. Derenne, R. P. Evershed, et al., “The molecularly-uncharacterized component of nonliving organic matter in natural environments,” Org. Geochem. 31, 945–958 (2000).

    Article  Google Scholar 

  86. J. I. Hedges and D. C. Mann, “The characterization of plant tissues by their lignin oxidation products,” Geochim. Cosmochim. Acta 43, 1803–1807 (1979).

    Article  Google Scholar 

  87. M. Hofrichter, “Review: Lignin conversion by manganese peroxidase (MnP),” Enzyme Microb. Technol. 30, 454–466 (2002). https://doi.org/10.1016/S0141-0229(01)00528-2

    Article  Google Scholar 

  88. P. M. Huang and A. G. Hardie, “Formation mechanisms of humic substances in the environment,” in Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems (Wiley, Hoboken, NJ, 2009), Ch. 2, pp. 84–98. https://doi.org/10.1002/9780470494950.ch2

  89. K. Ikeya, R. L. Sleighter, P. G. Hatcher, and A. Watanabe, “Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry,” Geochim. Cosmochim. Acta 153, 169–182 (2015). https://doi.org/10.1016/j.gca.2015.01.002

    Article  Google Scholar 

  90. International Humic Substances Society (IHSS), What are humic substances? 2007. http://humic-substances.org/what-arehumic-substances-2/.

  91. D. S. Jenkinson, “The fate of plant and animal residues in soil,” in The Chemistry of Soil Processes (Wiley, Chichester, 1981), pp. 505–561.

    Google Scholar 

  92. B. P. Kelleher and A. J. Simpson, “Humic substances in soils: are they really chemically distinct?” Environ. Sci. Technol. 40, 4605–4611 (2006).

    Article  Google Scholar 

  93. Khan K.S., Mack R., Castillo X., Rainer M.K., Joergensen G. “Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios,” Geoderma 271, 115–123 (2016). https://doi.org/10.1016/j.geoderma.2016.02.019

    Article  Google Scholar 

  94. S. Kim, R. W. Kramer, and P. G. Hatcher, “Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram,” Anal. Chem. 75 (20), 5336–5344 (2003).

    Article  Google Scholar 

  95. T. K. Kirk, “Degradation and conversion of lignocelluloses,” in The Filamentous Fungi: Fungal Technology (Edward Arnold, London, 1983), Ch. 11, pp. 266–295.

    Google Scholar 

  96. M. Kleber and M.G. Johnson, “Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment,” in Advances in Agronomy (Elsevier, Amsterdam, 2010), Vol. 106, Ch. 3, pp. 77–142. https://doi.org/10.1016/S0065-2113(10)06003-7

  97. M. Kleber and J. Lehmann, “Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems,” J. Environ. Qual. 48, 207–216 (2019). https://doi.org/10.2134/jeq2019.01.0036

    Article  Google Scholar 

  98. M. Kleber, S. Sollins, and R. A. Sutton, “A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into multilayered structures on mineral surfaces,” Biogeochemistry 85, 9–24 (2007).

    Article  Google Scholar 

  99. M. Klucakova and K. Veznikova, “Micro-organization of humic acids in aqueous solutions,” J. Mol. Struct. 1144, 33–40 (2017). https://doi.org/10.1016/j.molstruc.2017.05.012

    Article  Google Scholar 

  100. H. Knicker, “Solid state CPMAS 13C and 15N NMR spectroscopy in organic geochemistry and how spin dynamics can either aggravate or improve spectra interpretation,” Org. Geochem. 42, 867–890 (2011).

    Article  Google Scholar 

  101. H. Knicker, F. L. Rosario-Ortiz, and C. Zaccone, “Preface—special issue in memory of Frank J. Stevenson,” J. Soils Sediments 18, 1209–1211 (2018). https://doi.org/10.1007/s11368-018-1955-x

    Article  Google Scholar 

  102. I. Kögel-Knabner, “The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years ago,” Soil Biol. Biochem. 105, A3–A8 (2017).

    Article  Google Scholar 

  103. I. Kögel-Knabner and W. Amelung, “Soil organic matter in major pedogenic soil groups,” Geoderma 384, 114785 (2021). https://doi.org/10.1016/j.geoderma.2020.114785

    Article  Google Scholar 

  104. I. Kögel-Knabner, G. Guggenberger, M. Kleber, E. Kandeler, K. Kalbitz, S. Scheu, K. Eusterhues, and P. Leinweber, “Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry,” J. Plant Nutr. Soil Sci. 171, 61–82 (2008).

    Article  Google Scholar 

  105. P. M. Kopittke, R. C. Dalal, C. Hoeschen, C. Li, N. W. Menzies, and C. W. Mueller, “Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio,” Geoderma 357, 113974 (2020). https://doi.org/10.1016/j.geoderma.2019.113974

    Article  Google Scholar 

  106. N. Kulikova and I. Perminova, “Binding of atrazine to humic substances from soil, peat, and coal related to their structure,” Environ. Sci. Technol. 36, 3720–3724 (2002). https://doi.org/10.1021/es015778e

    Article  Google Scholar 

  107. J. Lehmann, D. Solomon, J. Kinyangi, L. Dathe, S. Wirick, and C. Jacobsen, “Spatial complexity of soil organic matter forms at nanometre scales,” Nat. Geosci. 1, 238–242 (2008). https://doi.org/10.1038/ngeo155

    Article  Google Scholar 

  108. J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nature 528, 60–68 (2015).

    Article  Google Scholar 

  109. A. V. Lisov, L. I. Trubitsina, Z. A. Lisova, I. V. Trubitsin, A. G. Zavarzina, and A. A. Leontievsky, “Transformation of humic acids by two-domain laccase from Streptomyces anulatus,” Process. Biochem. 76, 128–135 (2018).

    Article  Google Scholar 

  110. P. MacCarthy, “The principles of humic substances,” Soil Sci. 166 (11), 738–751 (2001). https://doi.org/10.1097/00010694-200111000-00003

    Article  Google Scholar 

  111. N. Mahieu, E. W. Randall, and D. S. Powlson, “Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter” Soil Sci. Soc. Am. J. 63 (2), 307–319 (1999). https://doi.org/10.2136/sssaj1999.03615995006300020008x

    Article  Google Scholar 

  112. J. Mao, X. Cao, D. C. Olk, W. Chu, and K. Schmidt-Rohr, “Advanced solid-state NMR spectroscopy of natural organic matter,” Prog. Nucl. Magn. Reson. Spectrosc. 100, 17–51 (2017).

    Article  Google Scholar 

  113. J.-D. Mao, W.-G. Hu, K. Schmidt-Rohr, G. Davies, E. A. Ghabbour, and B. Xing, “Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance,” Soil Sci. Soc. Am. J. 64, 873–884 (2000). https://doi.org/10.2136/sssaj2000.643873x

    Article  Google Scholar 

  114. C. Merino, F. Matus, Y. Kuzyakov, J. Dyckmans, S. Stock, and M. A. Dippold, “Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralization under anoxic conditions,” Sci. Total Environ. 760, 143397 (2021). https://doi.org/10.1016/j.scitotenv.2020.143397

    Article  Google Scholar 

  115. C. Monreal and M. Schnitzer, “The chemistry and biochemistry of organic components in the soil solutions of wheat rhizospheres,” Adv. Agron. 121, 179–251 (2013). https://doi.org/10.1016/B978-0-12-407685-3.00004-9

    Article  Google Scholar 

  116. A. Naidja, P. M. Huang, and J.-M. Bollag, “Comparison of the reaction products from the transformation of catechol catalyzed by birnessite or tyrosinase,” Soil Sci. Soc. Am. J. 62, 188–195 (1998).

    Article  Google Scholar 

  117. A. Nebbioso and A. Piccolo, “Advances in humeomics: enhanced structural identification of humic molecules after size fractionation of a soil humic acid,” Anal. Chim. Acta. 720, 77–90 (2012). https://doi.org/10.1016/j.aca.2012.01.027

    Article  Google Scholar 

  118. A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem. 405, 109–124 (2012). https://doi.org/10.1007/s00216-012-6363-2

    Article  Google Scholar 

  119. P. N. Nelson and J. A. Baldock, “Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses,” Biogeochemistry. 72, 1–34 (2005).

    Article  Google Scholar 

  120. J. D. Nosanchuk, R. E. Stark, and A. Casadevall, “Fungal melanin: what do we know about structure?” Front. Microbiol. 6, 1463 (2015).

    Article  Google Scholar 

  121. D. C. Olk, P. R. Bloom, E. M. Perdue, D. M. McKnight, Y. Chen, A. Farenhorst, N. Senesi, et al., “Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters,” J. Environ. Qual. 48, 217–232 (2019). https://doi.org/10.2134/jeq2019.02.0041

    Article  Google Scholar 

  122. D. S. Orlov, Y. M. Ammosova, and G. I. Glebova, “Molecular parameters of humic acids,” Geoderma 13, 211–229 (1975). https://doi.org/10.1016/0016-7061(75)90019-1

    Article  Google Scholar 

  123. A. Ortner, D. Huber, O. Haske-Cornelius, H. K. Weber, K. Hofer, W. Bauer, G. S. Nyanhongo, and G. M. Guebitz, “Laccase mediated oxidation of industrial lignins: is oxygen limiting?” Process Biochem. 50, 1277–1283 (2015).

    Article  Google Scholar 

  124. T. Osono, “Ecology of ligninolytic fungi associated with leaf litter decomposition,” Ecol. Res. 22, 955–974 (2007). https://doi.org/10.1007/s11284-007-0390-z

    Article  Google Scholar 

  125. E. M. Perdue and J. D. Ritchie, “Dissolved organic matter in freshwaters,” in Treatise on Geochemistry, Vol. 5: Surface and Ground Water, Weathering, and Soils (Elsevier, Amsterdam, 2014), Ch. 5.10, pp. 237–272. https://doi.org/10.1016/B978-0 08-095975-7.00509-X

  126. I. V. Perminova, “Size-exclusion chromatography of humic substances: complexities of data interpretation attributable to non-size exclusion effects,” Soil Sci. 164 (11), 834–840 (1999).

    Article  Google Scholar 

  127. I. V. Perminova, F. H. Frimmel, A. V. Kudryavtsev, N. A. Kulikova, G. Abbt-Braun, S. Hesse, and V. S. Petrosyan, “Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation,” Environ. Sci. Technol. 37, 2477–2485 (2003).

    Article  Google Scholar 

  128. J. Peuravuori, R. Koivikko, and K. Pihlaja, “Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy,” Water Res. 36 (18), 4552–4562 (2002). https://doi.org/10.1016/S0043-1354(02)00172-0

    Article  Google Scholar 

  129. A. Piccolo, “Humus and soil conservation,” in Humic Substances in Terrestrial Ecosystems (Elsevier, Amsterdam, 1996), Ch. 5, pp. 225–264.

    Google Scholar 

  130. A. Piccolo, “The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil sciences,” Adv. Agron. 75, 57–134 (2002).

    Article  Google Scholar 

  131. A. Piccolo, S. Nardi, and G. Concheri, “Macromolecular changes of humic substances induced by interaction with organic acid,” Eur. J. Soil Sci. 47 (3), 319–328 (1996). https://doi.org/10.1111/j.1365-2389.1996.tb01405.x

    Article  Google Scholar 

  132. A. Piccolo, S. Nardi, and G. Concheri, “Micelle-1ike conformation of humic substances as revealed by size exclusion chromatography,” Chemosphere 33 (4), 595–602 (1996).

    Article  Google Scholar 

  133. A. Piccolo, R. Spaccini, R. Nieder, and J. Richter, “Sequestration of a biologically labile organic carbon in soils by humified organic matter,” Clim. Change 67 (2), 329–343 (2004).

    Article  Google Scholar 

  134. C. M. Preston, “Carbon-13 solid-state NMR of soil organic matter—Using the technique effectively,” Can. J. Soil Sci. 81 (3), 255–270 (2001).

    Article  Google Scholar 

  135. C. M. Preston, J. R. Nault, and J. A. Trofymow, “Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2: 13C Abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin,” Ecosystems 12, 1078–1102 (2009).

    Article  Google Scholar 

  136. J. A. Rice, “Humin,” Soil Sci. 166 (1), 848–857 (2001).

    Article  Google Scholar 

  137. A. Rodionov, S. Pätzold, G. Welp, R. C. Pallares, L. Damerow, and W. Amelung, “Sensing of soil organic carbon using visible and near-infrared spectroscopy at variable moisture and surface roughness,” Soil Sci. Soc. Am. J. 78 (3), 949–957 (2014). https://doi.org/10.2136/sssaj2013.07.0264

    Article  Google Scholar 

  138. F. J. Ruiz-Dueñas and Á. T. Martínez, “Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this,” Microb. Biotechnol. 2 (2), 164–177 (2009).

    Article  Google Scholar 

  139. B. Saito and M. M. Seckler, “Alkaline extraction of humic substances from peat applied to organic-mineral fertilizer production,” Braz. J. Chem. Eng. 31 (3), 675–682 (2014). https://doi.org/10.1590/0104-6632.20140313s00002512

    Article  Google Scholar 

  140. A. Schaeffer, P. Nannipieri, M. Kästner, B. Schmidt, and J. Botterweck, “From humic substances to soil organic matter–microbial contributions. In honour of Konrad Haider and James P. Martin for their outstanding research contribution to soil science,” J. Soils Sediments 15, 1865–1881 (2015). https://doi.org/10.1007/s11368-015-1177-4

    Article  Google Scholar 

  141. M. W. I. Schmidt, J. O. Skjemstad, E. Gehrt, and I. Kögel-Knabner, “Charred organic carbon in German chernozemic soils,” Eur. J. Soil Sci. 50 (2), 351–365 (1999). https://doi.org/10.1046/j.1365-2389.1999.00236.x

    Article  Google Scholar 

  142. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, et al., “Persistence of soil organic matter as an ecosystem property,” Nature 478, 49–56 (2011). https://doi.org/10.1038/nature10386

    Article  Google Scholar 

  143. M. Schnitzer and C. M. Monreal, “Quo vadis soil organic matter research?: A biological link to the chemistry of humification,” Adv. Agron. 113, 139–213 (2011).

    Google Scholar 

  144. M. Schnitzer and S. U. Khan, Humic Substances in the Environment (Marcel Dekker, New York, 1972).

    Google Scholar 

  145. S. Shleev, P. Persson, G. Shumakovich, Y. Mazhugo, A. Yaropolov, T. Ruzgas, and L. Gorton, “Interaction of fungal laccases and laccase-mediator systems with lignin,” Enzyme Microb. Technol. 39, 841–847 (2006). https://doi.org/10.1016/j.enzmictec.2006.01.010

    Article  Google Scholar 

  146. A. J. Simpson, “Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy,” Magn. Reson. Chem. 40, S72–S82 (2002).

    Article  Google Scholar 

  147. A. J. Simpson, W. L. Kingery, M. H. Hayes, M. Spraul, E. Humpfer, P. Dvortsak, R. Kerssebaum, M. Godejohann, and M. Hofmann, “Molecular structures and associations of humic substances in the terrestrial environment,” Naturwissenschaften 89, 84–88 (2002).

    Article  Google Scholar 

  148. A. J. Simpson, W. L. Kingery, M. Spraul, E. Humpfer, P. Dvortsak, and R. Kerssebaum, “Separation of structural components in soil organic matter by diffusion ordered spectroscopy,” Environ. Sci. Technol. 35, 4421–4425 (2001). https://doi.org/10.1021/es0106218

    Article  Google Scholar 

  149. A. J. Simpson, M. J. Simpson, E. Smith, and B. P. Kelleher, “Microbially derived inputs to soil organic matter: Are current estimates too low?” Environ. Sci. Technol. 41, 8070–8076 (2007).

    Article  Google Scholar 

  150. R. L. Sinsabaugh, “Phenol oxidase, peroxidase and organic matter dynamics of soil,” Soil Biol. Biochem. 42, 391–404 (2010).

    Article  Google Scholar 

  151. R. L. Sleighter and P. G. Hatcher, “Fourier transform mass spectrometry for the molecular level characterization of natural organic matter: Instrument capabilities, applications, and limitations,” in Fourier Transforms: Approach to Scientific Principles (IntechOpen, London, 2011), Ch. 16, pp. 295–320. https://doi.org/10.5772/15959

  152. R. J. Smernik and J. M. Oades, “The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter: 2. HF-treated soil fractions,” Geoderma 96 (3), 159–171 (2000). https://doi.org/10.1016/S0016-7061(00)00007-0

    Article  Google Scholar 

  153. G. Song, M. H. B. Hayes, E. H. Novotny, and A. J. Simpson, “Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid,” Naturwissenschaften 98, 7–13 (2011). https://doi.org/10.1007/s00114-010-0733-4

    Article  Google Scholar 

  154. G. Song, E. H. Novotny, A. J. Simpson, C. E. Clapp, and M. H. B. Hayes, “Sequential exhaustive extraction of a mollisol soil, and characterizations of the humic components, including humin, by solid and solution state NMR,” Eur. J. Soil. Sci. 59, 505–516 (2008).

    Article  Google Scholar 

  155. G. Sposito, The Chemistry of Soils (Oxford University Press, Oxford, 2008).

    Google Scholar 

  156. K. T. Steffen, A. Hatakka, and M. Hofrichter, “Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila,” Appl. Environ. Microbiol. 68, 3442–3448 (2002).

    Article  Google Scholar 

  157. F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions (Wiley, New York, 1982).

    Google Scholar 

  158. F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions (Wiley, New York, 1994).

    Google Scholar 

  159. R. Sutton and G. Sposito, “Molecular structure in humic substances: the new view,” Environ. Sci. Technol. 39, 9009–9015 (2005). https://doi.org/10.1021/es050778q

    Article  Google Scholar 

  160. R. Swift, “Organic matter characterization,” in Methods of Soil Analysis, Part 3: Chemical Methods (Soil Science Society of America, Madison, WI, 1996), pp. 1011–1069. https://doi.org/10.2136/sssabookser5.3.c35

  161. R. S. Swift, “Molecular weight, size, shape, and charge characteristics of humic substances: some basic considerations,” in Humic Substances II: In Search of Structure (Wiley, Chichester, 1989), pp. 449–466.

    Google Scholar 

  162. M. Thevenot, M.-F. Dignac, and C. Rumpel, “Fate of lignins in soils: a review,” Soil Biol. Biochem. 42, 1200–1211 (2010).

    Article  Google Scholar 

  163. E. M. Thurman and R. L. Malcolm, “Preparative isolation of aquatic humic substances,” Environ. Sci. Technol. 15, 463–466 (1981). https://doi.org/10.1021/es00086a012

    Article  Google Scholar 

  164. C. F. Thurston, “The structure and function of fungal laccases,” Microbiology 140, 19–26 (1994).

    Article  Google Scholar 

  165. C. Tiberg, C. Sjostedt, and J. P. Gustafsson, “Metal sorption to spodosol Bs horizons: organic matter complexes predominate,” Chemosphere 196, 556–565 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.004

    Article  Google Scholar 

  166. L. I. Trubitsina, A. V. Lisov, O. V. Belova, I. V. Trubitsin, V. V. Demin, A. I. Konstantinov, A. G. Zavarzina, and A. A. Leontievsky, “Transformation of low molecular compounds and soil humic acid by two domain laccase of Streptomyces puniceus in the presence of ferulic and caffeic acids,” PLoS One 15 (9), 1–17 (2020). https://doi.org/10.1371/journal.pone.0239005

    Article  Google Scholar 

  167. N. A. Vasilyeva, S. Abiven, E. Y. Milanovskiy, M. Hilf, O. V. Rizhkov, and M. W. I. Schmidt, “Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a chernozem,” Soil Biol. Biochem. 43, 1985–1988 (2011). https://doi.org/10.1016/j.soilbio.2011.05.015

    Article  Google Scholar 

  168. W. Vermerris and R. Nicholson, “Biosynthesis of phenolic compounds,” in Phenolic Compound Biochemistry (Springer-Verlag, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-5164-7_3

  169. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57, 426–445 (2006).

    Article  Google Scholar 

  170. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57, 426–445 (2006).

    Article  Google Scholar 

  171. D. C. Waggoner, H. Chen, A. S. Willoughby, and P. G. Hatcher, “Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin,” Org. Geochem. 82, 69–76 (2015). https://doi.org/10.1016/j.orggeochem.2015.02.007

    Article  Google Scholar 

  172. K. Wang and B. Xing, “Structural and sorption characteristics of adsorbed humic acid on clay minerals,” J. Environ. Qual. 34, 342–349 (2005). https://doi.org/10.2134/jeq2005.0342

    Article  Google Scholar 

  173. M. J. M. Wells, “Conductivity-dependent flow field-flow fractionation of fulvic and humic acid aggregates,” Chromatography 2, 580–593 (2015). https://doi.org/10.3390/chromatography2030580

    Article  Google Scholar 

  174. M. J. M. Wells, “Supramolecular answers to the organic matter controversy,” J. Environ. Qual. 48, 1644–1651 (2019). https://doi.org/10.2134/jeq2019.02.0089

    Article  Google Scholar 

  175. M. J. M. Wells and H. A. Stretz, “Supramolecular architectures of natural organic matter,” Sci. Total Environ. 537, 81–92 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.406

    Article  Google Scholar 

  176. R. L. Wershaw, “Model for humus in soils and sediments,” Environ. Sci. Technol. 27, 814–816 (1993). https://doi.org/10.1021/es00042a603

    Article  Google Scholar 

  177. R. L. Wershaw, “The study of humic substances: in search of a paradigm,” in Humic Substances: Versatile Components of Plants, Soil and Water (Royal Society of Chemistry, Cambridge, 2000), pp. 1–7. https://doi.org/10.1016/B978-1-85573-807-2.50005-9

  178. D. W. S. Wong, “Structure and action mechanism of ligninolytic enzymes,” Appl. Biochem. Biotechnol. 157 (2), 174–209 (2009).

    Article  Google Scholar 

  179. I. S. Yavmetdinov, E. V. Stepanova, V. P. Gavrilova, B. V. Lokshin, I. V. Perminova, and O. V. Koroleva, “Isolation and characterization of humin-like substances produced by wood-degrading white-rot fungi,” Appl. Biochem. Microbiol. 39, 257–264 (2003).

    Article  Google Scholar 

  180. A. Zanella, J.-F. Ponge, and M. Matteodo, “Terrestrial humus systems and forms—Field practice and sampling problems,” Appl. Soil Ecol. 122, 92–102 (2018).

    Article  Google Scholar 

  181. A. G. Zavarzina, “Heterophase synthesis of humic acids in soils by immobilized phenol oxidases,” in Soil Enzymology (Springer-Verlag, Berlin, 2011), pp. 187–205.

    Google Scholar 

  182. A. Zavarzina, V. Demin, A. Lisov, M. Ermolin, E. Pogozhev, and P. Fedotov, “Increased sequestration of aromatic carbon on the mineral phase in the presence of a biocatalyst: the study under batch and dynamic conditions,” in Proceedings of the Eurosoil 2020 Congress (Geneva, 2020).

  183. A. G. Zavarzina, A. A. Lisov, A. A. Zavarzin, and A. A. Leontievsky, “Fungal oxidoreductases and humification in forest soils,” in Soil Enzymology (Springer-Verlag, Berlin, 2011), pp. 207–228.

    Google Scholar 

  184. A. G. Zavarzina, “A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances,” Eurasian Soil Sci. 39, S48–S53 (2006).

    Article  Google Scholar 

  185. A. G. Zavarzina, Lisov A.V., Leontievsky A.A. “The role of ligninolytic enzymes laccase and a versatile peroxidase of the white-rot fungus Lentinus tigrinus in biotransformation of soil humic matter: comparative in vivo study,” J. Geophys. Res.: Biogeosci. 123, 1–16 (2018).

    Google Scholar 

  186. A. G. Zavarzina and G. A. Zavarzin, “Humic substances in the early biosphere,” Paleontol. J. 47 (9), 984–988 (2013).

    Article  Google Scholar 

  187. Yu. A. Zavgorodnyaya, V. V. Demin, and A. V. Kurakov, “Biochemical degradation of soil humic acids and fungal melanins,” Org. Geochem. 33, 347–355 (2002). https://doi.org/10.1016/S0146-6380(01)00165-6

    Article  Google Scholar 

  188. W. Zech, G. Guggenberger, L. Haumaier, R. Pöhhacker, D. Schäfer, W. Amelung, A. Miltner, K. Kaiser, and F. Ziegler, “Organic matter dynamics in forest soils of temperate and tropical ecosystems,” in Humic Substances in Terrestrial Ecosystems (Elsevier, Amsterdam, 1996), Ch. 3, pp. 101–170.

    Google Scholar 

  189. W. Zech, N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. M. Miano, A. Miltner, and G. Schroth, “Factors controlling humification and mineralization of soil organic matter in the tropics,” Geoderma 79, 117–161 (1997). https://doi.org/10.1016/S0016-7061(97)00040-2

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 17-14-01207; sections “The Concept of Humic Substances…” and “Secondary Synthesis”), State budget (project no. 121040800154-8; section “Problems in Terminology”), and Interdisciplinary Research and Educational School of Moscow State University “The Future Planet and Global Environmental Change” (section “Alkaline Extraction”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zavarzina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavarzina, A.G., Danchenko, N.N., Demin, V.V. et al. Humic Substances: Hypotheses and Reality (a Review). Eurasian Soil Sc. 54, 1826–1854 (2021). https://doi.org/10.1134/S1064229321120164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321120164

Keywords:

Navigation