Skip to main content
Log in

Fine Earth and Nodules in Agrogenic Soils from the South of Primorskii Region: Physicochemical and Optical Properties, Catalase and Catalytic Activity

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A detailed study of Albic Stagnosols and Eutric Gleysols that are widely used in agriculture of the Far East and are characterized by the active formation of iron–manganese nodules has shown differences in their physicochemical and optical properties and biological activity parameters. The level of catalase activity in the studied soils is relatively low. Soils with a higher content of Ctot are characterized by low integral reflectivity. Differences in the optical parameters of the studied soils and nodules have been identified in the CIE-L*a*b* system. In comparison with the soil mass, the nodules display a closer relationship between optical parameters, a lower L* value, and a higher b* value. In both soils, the nodules are characterized by the high catalytic activity. A close negative correlation is observed between the values of catalytic activity and integral reflectivity. The results of our study attest to the significant role of nodules in the carbon accumulation in soils. An enhanced catalase and catalytic activity and formation the numerous zones of carbon accumulation within the nodules are specific features of nodules from Eutric Gleysols (Aric). The carbon-rich zones are active centers of oxidation of elements with variable valence, which contributes to the formation of larger nodules in these soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. F. Val’kov, K. Sh. Kazeev, and S. I. Kolesnikov, “Biological activity of soils in the North Caucasus,” Nauchn. Mysl’ Kavk., No. 1, 32–37 (1999).

  2. Yu. N. Vodyanitskii and L. L. Shishov, Study of Soil Processes according to Data on Soil Color (Dokuchaev Soil Science Inst., Moscow, 2004) [in Russian].

    Google Scholar 

  3. G. P. Golodyaev, “Biological activity of mountainous forest soils in Southern Primorye,” in Abundance, Biomass, and Productivity of Soil Microorganisms, Ed. by T. V. Aristovskaya (Nauka, Leningrad, 1972), pp. 240–246.

    Google Scholar 

  4. T. A. Devyatova and A. P. Shcherbakov, “Biological activity of chernozems in the center of the Russian Plain,” Eurasian Soil Sci. 39, 450–456 (2006).

    Article  Google Scholar 

  5. D. G. Zvyagintsev, “Biological activity of soils and scales for evaluation of its indicators,” Pochvovedenie, No. 6, 48–54 (1978).

    Google Scholar 

  6. T. A. Zubkova and L. O. Karpachevskii, “Catalytic activity of soils,” Pochvovedenie, No. 6, 115–121 (1979).

    Google Scholar 

  7. T. A. Zubkova, L. O. Karpachevskii, and I. F. Goncharova, “Catalytic activity in morphons and cutans of soddy-podzolic soil,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 4, 25–31 (1981).

  8. G. I. Ivanov, Pedogenesis in the South of the Far East (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  9. K. Sh. Kazeev, S. I. Kolesnikov, and V. F. Val’kov, Biological Diagnostics and Indication of Soils: Techniques and Methods of Study (Rostov State Univ., Rostov-on-Don, 2003) [in Russian].

    Google Scholar 

  10. K. Sh. Kazeev, S. I. Kolesnikov, Yu. V. Akimenko, and E. V. Dadenko, Biological Diagnostics of Terrestrial Ecosystems (Southern Federal Univ., Rostov-on-Don, 2016) [in Russian].

    Google Scholar 

  11. E. I. Karavanova, Optical Properties of Soils and Their Nature (Moscow State Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  12. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  13. S. I. Kolesnikov, A. N. Dul’tsev, N. A. Vernigorova, K. Sh. Kazeev, Yu. V. Akimenko, and T. A. Ter-Misakyants, “Biological diagnostics of the resistance of rice soils in Kuban to chemical pollution,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 2, 57–62 (2017).

    Google Scholar 

  14. S. I. Kolesnikov, Z. R. Tlekhas, K. Sh. Kazeev, and V. F. Val’kov, “Chemical contamination of Adygea soils and changes in their biological properties,” Eurasian Soil Sci. 42, 1397–1403 (2009).

    Article  Google Scholar 

  15. N. M. Kostenkov, Oxidation-Reduction Regimes in Periodically Moistened Soils (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  16. L. V. Lysak, M. S. Kadulin, I. A. Konova, E. V. Lapygina, A. V. Ivanov, and D. G. Zvyagintsev, “Population number, viability, and taxonomic composition of the bacterial nanoforms in iron–manganic concretions,” Eurasian Soil Sci. 46, 668–675 (2013).

    Article  Google Scholar 

  17. K. A. Martirosyan and M. G. Gevorkyan, “On the methodology of determining the catalase activity of the soils,” Eurasian Soil Sci. 38, 89–94 (2005).

    Google Scholar 

  18. Practical Manual on Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  19. N. A. Mikhailova and D. S. Orlov, Optical Properties of Soils and Soil Components (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  20. N. A. Mikhailova and L. N. Purtova, Optical-Energy Methods in Soil Ecology (Dal’nauka, Vladivostok, 2005) [in Russian].

    Google Scholar 

  21. M-02-0604-2007: Measurement Method of Mass Fraction of Silicon, Calcium, Titanium, Vanadium, Chromium, Barium, Manganese, Iron, Nickel, Copper, Zinc, Arsenic, Strontium, Lead, Zirconium, and Molybdenum in Powder Samples of Soils and Bottom Sediments by X-Ray Spectrometry Using Energy-Dispersive X-Ray Fluorescence EDX Shimadzu Spectrometers (St. Petersburg, 2007) [in Russian].

  22. V. I. Oznobikhin and E. P. Sinel’nikov, Characteristics of General Properties of Soils in Primorye and Their Rational Use (Primorskiy State Institute of Agriculture, Ussuriysk, 1985) [in Russian].

    Google Scholar 

  23. D. S. Orlov, O. N. Biryukova, and M. S. Rozanova, “Revised system of the humus status parameters of soils and their genetic horizons,” Eurasian Soil Sci. 37, 798–805 (2004).

    Google Scholar 

  24. D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Moscow State Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  25. N. N. Pavlova, T. V. Mel’nikova, and Yu. V. Kulish, “Dynamics of the biological activity of urban soils in the area of the radiation hazardous objects (by the example of Obninsk city),” Probl. Reg. Ekol., No. 6, 34–38 (2010).

  26. L. N. Purtova and M. L. Burdukovskii, “Assessment of ecological status of meadow-brown soils in Primorye,” Vestn. Krasn. Gos. Agrar. Univ., No. 7, 12–18 (2016).

  27. L. N. Purtova and N. M. Kostenkov, Energetic Status of Soils of the Russian Far East (Dal’nauka, Vladivostok, 2003) [in Russian].

    Google Scholar 

  28. L. N. Purtova, L. N. Shchapova, S. N. Inshakova, and A. N. Emel’yanov, “Influence of phytomelioration on fertility of agricultural abrazems in Primorye,” Agrar. Vestn. Urala, No. 10, 10–12 (2012).

    Google Scholar 

  29. V. I. Roslikova, Manganese-Ferruginous New Formations in Soils of the Lowland Landscapes of the Humid Zone (Dal’nauka, Vladivostok,1996) [in Russian].

    Google Scholar 

  30. Ya. O. Timofeeva and V. I. Golov, “Sorption of heavy metals by iron-manganic nodules in soils of Primorskii region,” Eurasian Soil Sci. 40, 1308–1315 (2007).

    Article  Google Scholar 

  31. F. Kh. Khaziev, “Conceptual model of the formation of soil enzymatic activity,” Pochvovedenie, No. 12, 129–130 (1979).

    Google Scholar 

  32. L. N. Shchapova, Soil Microflora of the South of Russian Far East (Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 1994) [in Russian].

  33. B. Elberling, H. Breuning-Madsen, and H. Knicker, “Carbon sequestration in iron-nodules in moist semi-deciduous tropical forest soil,” Geoderma 200–201, 202–207 (2013). https://doi.org/10.1016/j.geoderma.2013.03.001

    Article  Google Scholar 

  34. D. Gasparatos, “Sequestration of heavy metals from soil with Fe–Mn concretions and nodules,” Environ. Chem. Lett. 11, 1–9 (2013). https://doi.org/10.1007/s10311-012-0386-y

    Article  Google Scholar 

  35. D. Gasparatos, I. Massas, and A. Godelitsas, “Fe–Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: current knowledge and gaps,” Catena 182, 104106 (2019). https://doi.org/10.1016/j.catena.2019.104106

    Article  Google Scholar 

  36. M. Hu, F. Li, J. Lei, Y. Fang, H. Tong, W. Wu, and C. Liu, “Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland,” Environ. Sci.: Process. Impacts 17 (1), 213–224 (2015).

    Google Scholar 

  37. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  38. A. D. Mc Laren, “Soil as a system of bound enzymes,” Chem. Ind. 7, 28–30 (1974).

    Google Scholar 

  39. G. R. Schonbaum and B. Chance, “Catalase, in The Enzymes (Elsevier, Amsterdam, 1976), Vol. 13, Ch. 7.

    Google Scholar 

  40. Y. O. Timofeeva, A. A. Karabtsov, V. A. Semal’, M. L. Burdukovskii, and N. V. Bondarchuk, “Iron-manganese nodules in Udepts: the dependence of the accumulation of the trace elements on nodule size,” Soil Sci. Soc. Am. J. 78 (3), 767–778 (2014). https://doi.org/10.2136/sssaj2013.10.0444

    Article  Google Scholar 

  41. Y. O. Timofeeva, A. Karabtsov, M. Ushkova, M. Burdukovskii, and V. Semal, “Variation of trace elements accumulation by iron-manganese nodules from dystric Cambisols with and without contamination,” J. Soil Sediments 21 (2), 1064–1078 (2021). https://doi.org/10.1007/s11368-020-02814-w

    Article  Google Scholar 

  42. X.-L. Yu, Y.-N. Fu, P. C. Brookes, and S.-G. Lu, “Insights into the formation process and environmental fingerprints of iron-manganese nodules in subtropical China,” Soil Sci. Soc. Am. J. 79, 1101–1114 (2015).

    Article  Google Scholar 

  43. X. Yu, Y. Wang, G. Zhou, G. Peng, P. C. Brookes, and S. Lu, “Paleoclimatic fingerprints of ferromanganese nodules in subtropical Chinese soils identified by synchrotron radiation-based microprobes,” Chem. Geol. 531, 119357 (2020). https://doi.org/10.1016/j.chemgeo.2019.119357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. O. Timofeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purtova, L.N., Timofeeva, Y.O. Fine Earth and Nodules in Agrogenic Soils from the South of Primorskii Region: Physicochemical and Optical Properties, Catalase and Catalytic Activity. Eurasian Soil Sc. 54, 1855–1863 (2021). https://doi.org/10.1134/S1064229321120097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321120097

Keywords:

Navigation