Skip to main content
Log in

A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Eckhardt N A, Cominelli E, Galbiati M, Tonelli C. The future of science: food and water for life. Plant Cell, 2009, 21(2): 368–372

    Article  Google Scholar 

  2. Boretti A, Rosa L. Reassessing the projections of the world water development report. NPJ Clean Water, 2019, 2(1): 1–6

    Article  Google Scholar 

  3. Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayers A M. Science and technology for water purification in the coming decades. Nature, 2009, 452(7185): 301–310

    Article  Google Scholar 

  4. Pinto F S, Marques R C. Desalination projects economic feasibility: a standardization of cost determinants. Renewable & Sustainable Energy Reviews, 2017, 78: 904–915

    Article  Google Scholar 

  5. GWI and IDA. IDA Water Security Handbook 2018–2019. Oxford (United Kingdom): Media Analytics Ltd., 2018, 4–28

    Google Scholar 

  6. Kesieme U K, Milne N, Aral H, Cheng C Y, Duke M. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 2013, 323: 66–74

    Article  CAS  Google Scholar 

  7. Ali A, Tufa R A, Macedonio F, Curcio E, Drioli E. Membrane technology in renewable-energy-driven desalination. Renewable & Sustainable Energy Reviews, 2018, 81: 1–21

    Article  CAS  Google Scholar 

  8. Gryta M. Capillary polypropylene membranes for membrane distillation. Fibers (Basel, Switzerland), 2019, 7(1): 1

    CAS  Google Scholar 

  9. Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Industrial & Engineering Chemistry Research, 2001, 40(12): 2679–2684

    Article  CAS  Google Scholar 

  10. Drioli E, Criscuoli A, Curcio E. Membrane contactors: Fundamentals, Applications and Potentialities. 1st ed. Amsterdam: Elsevier, 2006, 24

    Google Scholar 

  11. Macedonio F, Drioli E. Special issue of desalination journal on “membrane engineering for desalination in the mining and extraction industry”. Desalination, 2018, 440: 1

    Article  CAS  Google Scholar 

  12. Quinst-Jensen C A, Macedonio F, Drioli E. Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for Mining from the sea. Crystals, 2016, 6(4): 36

    Article  Google Scholar 

  13. Chabanon E, Mangin D, Charcosset C. Membranes and crystallization processes: state of the art and prospects. Journal of Membrane Science, 2016, 509: 57–67

    Article  CAS  Google Scholar 

  14. Macedonio F, Quist-Jensen C A, Al-Harbi O, Alromaih H, Al-Jlil S A, Al Shabouna F, Drioli E. Thermodynamic modeling of brine and its use in membrane crystallizer. Desalination, 2013, 323: 83–92

    Article  CAS  Google Scholar 

  15. Biniaz P, Torabi Ardekani N, Makarem M A, Rahimpour M R. Water and wastewater treatment systems by novel integrated membrane distillation (MD). ChemEngineering, 2019, 3(1): 8

    Article  CAS  Google Scholar 

  16. Zaragoza G, Andrés-Mañas J A, Ruiz-Aguirre A. Commercial scale membrane distillation for solar desalination. NPJ Clean Water, 2018, 1(1): 1–6

    Article  Google Scholar 

  17. Guillén-Burrieza E, Blanco J, Zaragoza G, Alarcón D C, Palenzuela P, Ibarra M, Gernjak W. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science, 2011, 379(1–2): 386–396

    Article  Google Scholar 

  18. Koschikowski J, Wieghaus M, Rommel M, Ortin V S, Suarez B P, Rodríguez J R. Experimental investigations on solar driven standalone membrane distillation systems for remote areas. Desalination, 2009, 248(1–3): 125–131

    Article  CAS  Google Scholar 

  19. Schwantes R, Bauer L, Chavan K, Dücker D, Felsmann C, Pfafferott J. Air gap membrane distillation for hypersaline brine concentration: Operational analysis of a full-scale module-New strategies for wetting mitigation. Desalination, 2018, 444: 13–25

    Article  CAS  Google Scholar 

  20. Ruiz-Aguirre A, Andrés-Mañas J A, Fernández-Sevilla J M, Zaragoza G. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology, 2018, 205: 212–222

    Article  CAS  Google Scholar 

  21. Mohamed E S, Boutikos P, Mathioulakis E, Belessiotis V. Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system. Desalination, 2017, 408: 70–80

    Article  CAS  Google Scholar 

  22. Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination, 2015, 356: 56–84

    Article  CAS  Google Scholar 

  23. Khayet M. Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 2011, 164(1–2): 56–88

    Article  CAS  PubMed  Google Scholar 

  24. Martínez L, Florido-Díaz F J, Hernandez A, Prádanos P. Characterisation of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities. Journal of Membrane Science, 2002, 203 (1–2): 15–27

    Article  Google Scholar 

  25. Izquierdo-Gil M A, Garcia-Payo M C, Fernández-Pineda C. Air gap membrane distillation of sucrose aqueous solutions. Journal of Membrane Science, 1999, 155(2): 291–307

    Article  CAS  Google Scholar 

  26. Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98

    Article  CAS  Google Scholar 

  27. Picard C, Larbot A, Guida-Pietrasanta F, Boutevin B, Ratsimihety A. Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Separation and Purification Technology, 2001, 25(1–3): 65–69

    Article  CAS  Google Scholar 

  28. Dafinov A, Garcia-Valls R, Font J. Modification of ceramic membranes by alcohol adsorption. Journal of Membrane Science, 2002, 196(1): 69–77

    Article  CAS  Google Scholar 

  29. Ko C C, Ali A, Drioli E, Tung K L, Chen C H, Chen Y R, Macedonio F. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination, 2018, 440: 48–58

    Article  CAS  Google Scholar 

  30. Chen X, Gao X, Fu K, Qiu M, Xiong F, Ding D, Cui Z, Wang Z, Fan Y, Drioli E. Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination, 2018, 443: 212–220

    Article  CAS  Google Scholar 

  31. Ali A, Macedonio F, Drioli E, Aljlil S, Alharbi O A. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chemical Engineering Research & Design, 2013, 91(10): 1966–1977

    Article  CAS  Google Scholar 

  32. Drioli E, Giorno L, Fontananova E. Comprehensive Membrane Science and Engineering. 2nd ed. Oxford: Elsevier, 2017: 282–296

    Google Scholar 

  33. Ravi J, Othman M H D, Matsuura T, Ro’il Bilad M, El-badawy T H, Aziz F, Ismail A F, Rahman M A, Jaafar J. Polymeric membranes for desalination using membrane distillation: a review. Desalination, 2020, 490: 114530

    Article  CAS  Google Scholar 

  34. Yao M, Tijing L D, Naidu G, Kim S H, Matsuyama H, Fane A G, Shon H K. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination, 2020, 479: 114312

    Article  CAS  Google Scholar 

  35. Alkhudhiri A, Hilal N. Emerging Technologies for Sustainable Desalination Handbook. 1st ed. Oxford: Butterworth-Heinemann, 2018, 55–106

    Book  Google Scholar 

  36. Cohen Y. Materials and Energy: Volume 17. Advances in Water Desalination Technologies. Singapore: World Scientific Publishing Co. Pte. Ltd., 2021, 227–261

    Book  Google Scholar 

  37. Alhathal Alanezi A, Abdallah H, El-Zanati E, Ahmad A, Sharif A O. Performance investigation of O-ring vacuum membrane distillation module for water desalination. Journal of Chemistry, 2016: 9378460

  38. Gude G. Emerging Technologies for Sustainable Desalination Handbook. Burlington: Butterworth-Heinemann, 2018, 55–98

    Google Scholar 

  39. Franken A C, Nolten J A, Mulder M H, Bargeman D, Smolders C A. Wetting criteria for the applicability of membrane distillation. Journal of Membrane Science, 1987, 33(3): 315–328

    Article  CAS  Google Scholar 

  40. Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. Fouling and its control in membrane distillation—a review. Journal of Membrane Science, 2015, 475: 215–244

    Article  CAS  Google Scholar 

  41. Rezaei M, Warsinger D M, Duke M C, Matsuura T, Samhaber W M. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Research, 2018, 139: 329–352

    Article  CAS  PubMed  Google Scholar 

  42. Summers E K, Arafat H A, Lienhard J H. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination, 2012, 290: 54–66

    Article  CAS  Google Scholar 

  43. Ding Z, Liu L, Li Z, Ma R, Yang Z. Experimental study of ammonia removal from water by membrane distillation (MD): the comparison of three configurations. Journal of Membrane Science, 2006, 286(1–2): 93–103

    Article  CAS  Google Scholar 

  44. Basile A. Handbook of Membrane Reactors. Volume 2: Reactor Types and Industrial Applications. 1st ed. Philadelphia: Woodhead Publishing, 2013, 78–81

    Book  Google Scholar 

  45. Bagger-Jørgensen R, Meyer A S, Varming C, Jonsson G. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation. Journal of Food Engineering, 2004, 64(1): 23–31

    Article  Google Scholar 

  46. Wang L H, Pyatkovskyy T, Yousef A, Zeng X A, Sastry S K. Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. Innovative Food Science & Emerging Technologies, 2020, 62: 102349

    Article  CAS  Google Scholar 

  47. Ali A, Quist-Jensen C A, Macedonio F, Drioli E. On designing of membrane thickness and thermal conductivity for large scale membrane distillation modules. Journal of Membrane Science and Research, 2016, 2(4): 179–185

    Google Scholar 

  48. Wang P, Teoh M M, Chung T S. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Research, 2011, 45(17): 5489–5500

    Article  CAS  PubMed  Google Scholar 

  49. Khayet M, Mengual J I, Matsuura T. Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. Journal of Membrane Science, 2005, 252(1–2): 101–113

    Article  CAS  Google Scholar 

  50. Deshmukh A, Elimelech M. Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. Journal of Membrane Science, 2017, 539: 458–474

    Article  CAS  Google Scholar 

  51. Lawson K W, Loyd D R. Membrane distillation. Journal of Membrane Science, 1997, 24(1): 1–25

    Article  Google Scholar 

  52. Wang K Y, Foo S W, Chung T S. Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Industrial & Engineering Chemistry Research, 2009, 48(9): 4474–4483

    Article  CAS  Google Scholar 

  53. Eykens L, De Sitter K, Dotremont C, Pinoy L, Van der Bruggen B. How to optimize the membrane properties for membrane distillation: a review. Industrial & Engineering Chemistry Research, 2016, 55(35): 9333–9343

    Article  CAS  Google Scholar 

  54. Schneider K, Hölz W, Wollbeck R, Ripperger S. Membranes and modules for transmembrane distillation. Journal of Membrane Science, 1988, 39(1): 25–42

    Article  CAS  Google Scholar 

  55. Tang Y, Li N, Liu A, Ding S, Yi C, Liu H. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 2012, 287: 326–339

    Article  CAS  Google Scholar 

  56. Gryta M. Fouling in direct contact membrane distillation process. Journal of Membrane Science, 2008, 325(1): 383–394

    Article  CAS  Google Scholar 

  57. Du H, Li J, Zhang J, Su G, Li X, Zhao Y. Separation of hydrogen and nitrogen gases with porous graphene membrane. Journal of Physical Chemistry C, 2011, 115(47): 23261–23266

    Article  CAS  Google Scholar 

  58. Basile A, Cassano A, Rastogi N K. Advances in Membrane Technologies for Water Treatment: Materials, Processes and applications. 1st ed. Cambridge: Woodhead Publishing, 2015, 605–624

    Google Scholar 

  59. Lin J C, Lee D J, Huang C. Membrane fouling mitigation: membrane cleaning. Separation Science and Technology, 2010, 45 (7): 858–872

    Article  CAS  Google Scholar 

  60. Norafifah H, Noordin M Y, Wong K Y, Izman S, Ahmad A A. A study of operational factors for reducing the fouling of hollow fiber membranes during wastewater filtration. Procedia CIRP, 2015, 26: 781–785

    Article  Google Scholar 

  61. Shahkaramipour N, Tran T N, Ramanan S, Lin H. Membranes with surface-enhanced antifouling properties for water purification. Membranes, 2017, 7(1): 13

    Article  PubMed Central  Google Scholar 

  62. Teoh M M, Chung T S, Yeo Y S. Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation. Chemical Engineering Journal, 2011, 171(2): 684–691

    Article  CAS  Google Scholar 

  63. Teoh M M, Chung T S. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology, 2009, 66(2): 229–236

    Article  CAS  Google Scholar 

  64. Zou L, Gusnawan P, Jiang Y B, Zhang G, Yu J. Macrovoid-inhibited PVDF hollow fiber membranes via spinning process delay for direct contact membrane distillation. ACS Applied Materials & Interfaces, 2020, 12(25): 28655–28668

    Article  CAS  Google Scholar 

  65. Mansourizadeh A, Ismail A F. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. Journal of Hazardous Materials, 2009, 171(1–3): 38–53

    Article  CAS  PubMed  Google Scholar 

  66. Drioli E, Giorno L. Encyclopedia of Membranes. 1st ed. Berlin: Springer, 2016, 1009–1012

    Book  Google Scholar 

  67. Schofield R W, Fane A G, Fell C J. Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. Journal of Membrane Science, 1990, 53(1–2): 159–171

    Article  CAS  Google Scholar 

  68. Guijt C M, Meindersma G W, Reith T, De Haan A B. Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis. Separation and Purification Technology, 2005, 43(3): 245–255

    Article  CAS  Google Scholar 

  69. McGaughey A L, Gustafson R D, Childress A E. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. Journal of Membrane Science, 2017, 543: 143–150

    Article  CAS  Google Scholar 

  70. Gryta M. Long-term performance of membrane distillation process. Journal of Membrane Science, 2005, 265(1–2): 153–159

    Article  CAS  Google Scholar 

  71. Srisurichan S, Jiraratananon R, Fane A G. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 2006, 277(1–2): 186–194

    Article  CAS  Google Scholar 

  72. Martínez-Díez L, Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273

    Article  Google Scholar 

  73. Asghari M, Dehghani M, Riasat Harami H, Mohammadi A H. Effects of operating parameters in sweeping gas membrane distillation process: numerical simulation of Persian Gulf seawater desalination. Journal of Water and Environmental Nanotechnology, 2018, 3(2): 128–140

    CAS  Google Scholar 

  74. Ali A, Quist-Jensen C A, Macedonio F, Drioli E. Optimization of module length for continuous direct contact membrane distillation process. Chemical Engineering and Processing, 2016, 110: 188–200

    Article  CAS  Google Scholar 

  75. Ali A, Tsai J H, Tung K L, Drioli E, Macedonio F. Designing and optimization of continuous direct contact membrane distillation process. Desalination, 2018, 426: 97–107

    Article  CAS  Google Scholar 

  76. Cerci Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination, 2002, 142(3): 257–266

    Article  CAS  Google Scholar 

  77. Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination, 2007, 203(1–3): 260–276

    Article  CAS  Google Scholar 

  78. Macedonio F, Drioli E. An exergetic analysis of a membrane desalination system. Desalination, 2010, 261(3): 293–299

    Article  CAS  Google Scholar 

  79. Macedonio F, Criscuoli A, Gzara L, Albeirutty M, Drioli E. Water and salts recovery from desalination brines: an exergy evaluation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105884

    Article  CAS  Google Scholar 

  80. Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis. Chemical Engineering Research & Design, 2006, 84 (3): 209–220

    Article  CAS  Google Scholar 

  81. Shukuya M, Hammache A. Introduction to the concept of exergy-for a better understanding of low-temperature-heating and high-temperature-cooling systems. VTT Technical Research Centre of Finland, VTT Tiedotteita—Research Notes No. 2158, 2002, 1–61

  82. Ali A, Quist-Jensen C A, Drioli E, Macedonio F. Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. Desalination, 2018, 434: 161–168

    Article  CAS  Google Scholar 

  83. Tufa R A, Noviello Y, Di Profio G, Macedonio F, Ali A, Drioli E, Fontananova E, Bouzek K, Curcio E. Integrated membrane distillation-reverse electrodialysis system for energy-efficient sea-water desalination. Applied Energy, 2019, 253: 113551

    Article  CAS  Google Scholar 

  84. Perrotta M L, Saielli G, Casella G, Macedonio F, Giorno L, Drioli E, Gugliuzza A. An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Applied Materials Today, 2017, 9: 1–9

    Article  Google Scholar 

  85. Eykens L, Hitsov I, De Sitter K, Dotremont C, Pinoy L, Nopens I, Van der Bruggen B. Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. Journal of Membrane Science, 2016, 498: 353–364

    Article  CAS  Google Scholar 

  86. Woo Y C, Tijing L D, Shim W G, Choi J S, Kim S H, He T, Drioli E, Shon H K. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 2016, 520: 99–110

    Article  CAS  Google Scholar 

  87. Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292

    Article  CAS  PubMed  Google Scholar 

  88. Mi B. Graphene oxide membranes for ionic and molecular sieving. Science, 2014, 343(6172): 740–742

    Article  CAS  PubMed  Google Scholar 

  89. Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464

    Article  CAS  PubMed  Google Scholar 

  90. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Article  CAS  PubMed  Google Scholar 

  91. Ho C Y, Powell R W, Liley P E. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279–421

    Article  CAS  Google Scholar 

  92. Grasso G, Galiano F, Yoo M J, Mancuso R, Park H B, Gabriele B, Figoli A, Drioli E. Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604: 118017

    Article  CAS  Google Scholar 

  93. Woo Y C, Kim Y, Shim W G, Tijing L D, Yao M, Nghiem L D, Choi J S, Kim S H, Shon H K. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. Journal of Membrane Science, 2016, 513: 74–84

    Article  CAS  Google Scholar 

  94. Gontarek E, Macedonio F, Militano F, Giorno L, Lieder M, Politano A, Drioli E, Gugliuzza A. Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. Nanoscale, 2019, 11(24): 11521–11529

    Article  CAS  PubMed  Google Scholar 

  95. Frappa M, Castillo A D, Macedonio F, Politano A, Drioli E, Bonaccorso F, Pellegrini V, Gugliuzza A. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Advances, 2020, 2 (10): 4728–4739

    Article  CAS  Google Scholar 

  96. Gugliuzza A, Macedonio F, Politano A, Drioli E. Prospects of 2D materials-based membranes in water desalination. Chemical Engineering Transactions, 2019, 73: 265–270

    Google Scholar 

  97. Macedonio F, Politano A, Drioli E, Gugliuzza A. Bi2Se3-assisted membrane crystallization. Materials Horizons, 2018, 5(5): 912–919

    Article  CAS  Google Scholar 

  98. Frappa M, Macedonio F, Gugliuzza A, Jin W, Drioli E. Performance of PVDF based membrane with 2D materials for Membrane Assisted-Crystallization process. Membranes, 2021, 11 (5): 302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Krupenkin T N, Taylor J A, Schneider T M, Yang S. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824–3827

    Article  CAS  PubMed  Google Scholar 

  100. Saffarini R B, Mansoor B, Thomas R, Arafat H A. Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. Journal of Membrane Science, 2013, 429: 282–294

    Article  CAS  Google Scholar 

  101. Yin Y, Jeong N, Tong T. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. Journal of Membrane Science, 2020, 614: 118503

    Article  CAS  Google Scholar 

  102. Gryta M. The application of polypropylene membranes for production of fresh water from brines by membrane distillation. Chemical Papers, 2017, 71(4): 775–784

    Article  CAS  Google Scholar 

  103. Meng S, Ye Y, Mansouri J, Chen V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2014, 463: 102–112

    Article  CAS  Google Scholar 

  104. Srisurichan S, Jiraratananon R, Fane A G. Humic acid fouling in the membrane distillation process. Desalination, 2005, 174(1): 63–72

    Article  CAS  Google Scholar 

  105. Lu K J, Chung T S. Membrane Distillation: Membranes, Hybrid Systems and Pilot Studies. Boca Raton: CRC Press, 2019, 167–182

    Book  Google Scholar 

  106. Razmjou A, Arifin E, Dong G, Mansouri J, Chen V. Super-hydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 2012, 415: 850–863

    Article  Google Scholar 

  107. Ma Z, Hong Y, Ma L, Su M. Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water desalination. Langmuir, 2009, 25(10): 5446–5450

    Article  CAS  PubMed  Google Scholar 

  108. Su C, Horseman T, Cao H, Christie K, Li Y, Lin S. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance. Environmental Science & Technology, 2019, 53(20): 11801–11809

    Article  CAS  Google Scholar 

  109. Lin S, Nejati S, Boo C, Hu Y, Osuji C O, Elimelech M. Omniphobic membrane for robust membrane distillation. Environmental Science & Technology Letters, 2014, 1(11): 443–447

    Article  CAS  Google Scholar 

  110. Lu K J, Zuo J, Chang J, Kuan H N, Chung T S. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environmental Science & Technology, 2018, 52(7): 4472–4480

    Article  CAS  Google Scholar 

  111. Woo Y C, Chen Y, Tijing L D, Phuntsho S, He T, Choi J S, Kim S H, Shon H K. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242

    Article  CAS  Google Scholar 

  112. Yang H C, Hou J, Chen V, Xu Z K. Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 2016, 55(43): 13398–13407

    Article  CAS  PubMed  Google Scholar 

  113. Chen Y, Lu K J, Japip S, Chung T S. Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation? Environmental Science & Technology, 2020, 54(19): 12713–12722

    Article  CAS  Google Scholar 

  114. Timin A S, Gao H, Voronin D V, Gorin D A, Sukhorukov G B. Inorganic/organic multilayer capsule composition for improved functionality and external triggering. Advanced Materials Interfaces, 2017, 4(1): 1600338

    Article  Google Scholar 

  115. Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science, 2016, 506: 60–70

    Article  CAS  Google Scholar 

  116. McKeen L W. Permeability Properties of Plastics and Elastomers. 3rd ed. Waltham: Elsevier, 2012, 21–37

    Book  Google Scholar 

  117. Tsai J H, Perrotta M L, Gugliuzza A, Macedonio F, Giorno L, Drioli E, Tung K L, Tocci E. Membrane-assisted crystallization: a molecular view of NaCl nucleation and growth. Applied Sciences (Basel, Switzerland), 2018, 8(11): 2145

    CAS  Google Scholar 

  118. Whelan A. Polymer Technology Dictionary. 1st ed. London: Springer Science & Business Media, 2012, 341

    Google Scholar 

  119. Bottino A, Capannelli G, Munari S, Turturro A. High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 1988, 68(2–3): 167–177

    Article  CAS  Google Scholar 

  120. Mansourizadeh A, Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988

    Article  CAS  Google Scholar 

  121. Chen S, Ishii J, Horiuchi S, Yoshizawa-Fujita M, Izgorodina E I. Difference in chemical bonding between lithium and sodium salts: influence of covalency on their solubility. Physical Chemistry Chemical Physics, 2017, 19(26): 17366–17372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesca Macedonio or Enrico Drioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capizzano, S., Frappa, M., Macedonio, F. et al. A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems. Front. Chem. Sci. Eng. 16, 592–613 (2022). https://doi.org/10.1007/s11705-021-2105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2105-3

Keywords

Navigation