Skip to main content
Log in

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

With the increasing demand for high-performance and safe fuels in aerospace propulsion systems, gelled fuels have attracted increasing attention. Because of their unique structure, gelled fuels exhibit the advantages of both solid and liquid fuels, such as high energy density, controllable thrust and storage safety. This review provides an overview on design, preparation and performance characterization of gelled fuels. The composition, preparation process and gelation mechanism of gelled high-energy-density fuels are described. Considering these aspects, the rheology and flow behavior of gelled fuels is summarized in terms of the shear thinning property, dynamic viscoelasticity and thixotropy. Moreover, the progress of atomization of gelled fuels is reviewed with a focus on the effect of atomizing nozzles. In addition, the experiments and theoretical models of single droplet combustion and combustor combustion are described. Finally, research directions for the development and application of gelled fuels are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Feoktistov D V, Glushkov D O, Kuznetsov G V, Orlova E G. Gel fuels based on oil-filled cryogels: corrosion of tank material and spontaneous ignition. Chemical Engineering Journal, 2020, 421: 127765

    Article  CAS  Google Scholar 

  2. Glushkov D O, Nigay A G, Yashutina O S. The gel fuel ignition at local conductive heating. International Journal of Heat and Mass Transfer, 2018, 127: 1203–1214

    Article  CAS  Google Scholar 

  3. Padwal M B, Natan B, Mishra D P. Gel propellants. Progress in Energy and Combustion Science, 2021, 83: 100885

    Article  Google Scholar 

  4. Palaszewski B, Zakany J S. Metallized gelled propellants-oxygen/RP-1/aluminum rocket combustion experiments. In: 31st Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 1995, 1–33

    Google Scholar 

  5. Palaszewski B, Zakany J S. Metallized gelled propellants-oxygen/RP-1/aluminum rocket heat transfer and combustion measurements. In: 33rd Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 1996, 1–16

    Google Scholar 

  6. Starkovich J, Palaszewski B. Technology for gelled liquid cryogenic propellants-metallized hydrogen/aluminum. In: 29th Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 1993, 1–4

    Google Scholar 

  7. Ciezki H K, Hürttlen J, Naumann K W, Negri M, Ramsel J, Weiser V. Overview of the German gel propulsion technology program. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Washington D.C.: AIAA, 2014, 1–16

    Google Scholar 

  8. Cao J W, Pan L, Zhang X W, Zou J J. Physicochemical and rheological properties of Al/JP-10 gelled fuel. Chinese Journal of Energetic Materials, 2020, 28(5): 382–390

    Google Scholar 

  9. Munjal N L, Gupta B L, Varma M. Preparative and mechanistic studies on unsymmetrical dimethyl hydrazine-red fuming nitric acid liquid propellant gels. Propellants, Explosives, Pyrotechnics, 1985, 10(4): 111–117

    Article  CAS  Google Scholar 

  10. Natan B, Rahimi S. The status of gel propellants in year 2000. International Journal of Energetic Materials & Chemical Propulsion, 2002, 5(1–6): 172–194

    Article  Google Scholar 

  11. Rapp D C, Zurawski R L. Characterization of aluminum/RP-1 gel propellant properties. In: 24th Joint Propulsion Conference. Washington D.C.: AIAA, 1988, 1–19

    Google Scholar 

  12. Galecki D L. Ignition and combustion of metallized propellants. In: 25th Joint Propulsion Conference. Washington D.C.: AIAA, 1989, 1–9

    Google Scholar 

  13. Rahimi S, Hasan D, Peretz A. Development of laboratory-scale gel propulsion technology. Journal of Propulsion and Power, 2004, 20(1): 93–100

    Article  CAS  Google Scholar 

  14. Arnold R, Santos P H S, Campanella O H, Anderson W E. Rheological and thermal behavior of gelled hydrocarbon fuels. Journal of Propulsion and Power, 2011, 27(1): 151–161

    Article  CAS  Google Scholar 

  15. Teipel U, Forter-Barth U. Rheological behavior of nitromethane gelled with nanoparticles. Journal of Propulsion and Power, 2005, 21(1): 40–43

    Article  CAS  Google Scholar 

  16. Dennis J D, Kubal T D, Campanella O, Son S F, Pourpoint T L. Rheological characterization of monomethylhydrazine gels. Journal of Propulsion and Power, 2013, 29(2): 313–320

    Article  CAS  Google Scholar 

  17. Baek G, Kim S, Han J, Kim C. Atomization characteristics of impinging jets of gel material containing nanoparticles. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(21): 1272–1285

    Article  CAS  Google Scholar 

  18. Song W, Hwang J, Koo J. Atomization of gelled kerosene by multi-hole pintle injector for rocket engines. Fuel, 2021, 285: 119212

    Article  CAS  Google Scholar 

  19. Xiao Y L, Xia Z X, Huang L Y, Ma L K, Yang D L. Atomization of gel fuels with solid particle addition utilizing an air atomizing nozzle. Energies, 2018, 11(11): 2959

    Article  CAS  Google Scholar 

  20. Rahimi S, Natan B. Atomization of gel propellants through an airblast triplet atomizer. Atomization and Sprays, 2006, 16(4): 379–400

    Article  CAS  Google Scholar 

  21. Rahimi S, Peretz A, Natan B. On shear rheology of gel propellants. Propellants, Explosives, Pyrotechnics, 2007, 32(2): 165–174

    Article  CAS  Google Scholar 

  22. Solomon Y, DeFini S J, Pourpoint T L, Anderson W E. Gelled monomethyl hydrazine hypergolic droplet investigation. Journal of Propulsion and Power, 2012, 29(1): 79–86

    Article  CAS  Google Scholar 

  23. Cho K Y, Pourpoint T L, Son S F, Lucht R P. Microexplosion investigation of monomethylhydrazine gelled droplet with OH planar laser-induced fluorescence. Journal of Propulsion and Power, 2013, 29(6): 1303–1310

    Article  CAS  Google Scholar 

  24. He B, Nie W S, Feng S J, Su L Y, Zhuang F C. Effects of NTO oxidizer temperature and pressure on hypergolic ignition delay and life time of UDMH organic gel droplet. Propellants, Explosives, Pyrotechnics, 2013, 38(5): 665–684

    Article  CAS  Google Scholar 

  25. Feng S J, He B, He H B, Su L Y, Hou Z Y, Nie W S, Guo X H. Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions. Fuel, 2013, 111: 367–373

    Article  CAS  Google Scholar 

  26. Liu Z J, Hu X P, He Z, Wu J J. Experimental study on the combustion and microexplosion of freely falling delled unsymmetrical dimethylhydrazine (UDMH) fuel droplets. Energies, 2012, 5(8): 3126–3136

    Article  CAS  Google Scholar 

  27. He B, Nie W S, He H B. Unsteady combustion model of nonmetalized organic gel fuel droplet. Energy & Fuels, 2012, 26(11): 6627–6639

    Article  CAS  Google Scholar 

  28. Moghaddam A S, Rezaei M R, Tavangar S. Experimental investigation of characteristic length influence on a combustion chamber performance with liquid and gelled UDMH/IRFNA bipropellants. Propellants, Explosives, Pyrotechnics, 2019, 44(9): 1154–1159

    Article  CAS  Google Scholar 

  29. Ciezki H, Robers A, Schneider G. Investigation of the spray behavior of gelled Jet-A1 fuels using an air blast and an impinging jet atomizer. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 2002, 1–8

    Google Scholar 

  30. Padwal M B, Mishra D P. Interactions among synthesis, rheology, and atomization of a gelled propellant. Rheologica Acta, 2016, 55(3): 177–186

    Article  CAS  Google Scholar 

  31. Negri M, Ciezki H K. Combustion of gelled propellants containing microsized and nanosized aluminum particles. Journal of Propulsion and Power, 2014, 31(1): 400–407

    Article  Google Scholar 

  32. Padwal M B, Mishra D P. Characteristics of gelled Jet A1 sprays formed by internal impingement of micro air jets. Fuel, 2016, 185: 599–611

    Article  CAS  Google Scholar 

  33. Padwal M B, Mishra D P. Experimental characterization of gelled Jet A1 spray flames. Flow, Turbulence and Combustion, 2016, 97(1): 295–337

    Article  CAS  Google Scholar 

  34. Kampen J V, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector. Aerospace Science and Technology, 2007, 11(1): 77–83

    Article  CAS  Google Scholar 

  35. Arnold R, Santos P H S, Kubal T, Campanella O, Anderson W E. Investigation of gelled JP-8 and RP-1 fuels. In: Proceedings of the World Congress on Engineering and Computer Science. Berlin: Springer, 2009, 1–6

    Google Scholar 

  36. Arnold R, Anderson W E. Droplet burning of JP-8/silica gels. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Washington D.C.: AIAA, 2010, 1–12

    Google Scholar 

  37. Solomon Y, Natan B, Cohen Y. Combustion of gel fuels based on organic gellants. Combustion and Flame, 2009, 156(1): 261–268

    Article  CAS  Google Scholar 

  38. Sabourin J L, Yetter R A, Asay B W, Lloyd J M, Sanders V E, Risha G A, Son S F. Effect of nano-aluminum and fumed silica particles on deflagration and detonation of nitromethane. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 385–393

    Article  CAS  Google Scholar 

  39. Miglani A, Nandagopalan P, John J, Baek S W. Oscillatory bursting of gel fuel droplets in a reacting environment. Scientific Reports, 2017, 7(1): 3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nandagopalan P, John J, Baek S W, Miglani A, Ardhianto K. Shear-flow rheology and viscoelastic instabilities of ethanol gel fuels. Experimental Thermal and Fluid Science, 2018, 99: 181–189

    Article  CAS  Google Scholar 

  41. John J, Nandagopalan P, Baek S W, Miglani A. Rheology of solidlike ethanol fuel for hybrid rockets: effect of type and concentration of gellants. Fuel, 2017, 209: 96–108

    Article  CAS  Google Scholar 

  42. Zhang X W, Pan L, Wang L, Zou J J. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids. Chemical Engineering Science, 2018, 180: 95–125

    Article  CAS  Google Scholar 

  43. Nie J R, Jia T H, Pan L, Zhang X W, Zou J J. Development of high-energy-density liquid aerospace fuel: a perspective. Transactions of Tianjin University, 2021, https://doi.org/10.1007/s12209-021-00302-x

  44. Wang X Y, Jia T H, Pan L, Liu Q, Fang Y M, Zou J J, Zhang X W. Review on the relationship between liquid aerospace fuel composition and their physicochemical properties. Transactions of Tianjin University, 2020, 27(2): 87–109

    Article  CAS  Google Scholar 

  45. Chen A Q, Guan X D, Li X M, Zhang B H, Zhang B, Song J. Preparation and characterization of metalized JP-10 gel propellants with excellent thixotropic performance. Propellants, Explosives, Pyrotechnics, 2017, 42(9): 1007–1013

    Article  CAS  Google Scholar 

  46. Qiu X P, Pang A M, Jin F, Wei W, Chen K H, Lu T J. Preparation and characterization of JP-10 gel propellants with tris-urea low-molecular mass gelators. Propellants, Explosives, Pyrotechnics, 2016, 41(2): 212–216

    Article  CAS  Google Scholar 

  47. E X-T-F, Pan L, Zhang X W, Zou J J. Synthesis and performance of high-density and high-thixotropy gelled hydrocarbon fuels. Chinese Journal of Energetic Materials, 2019, 27(06): 501–508

    CAS  Google Scholar 

  48. Li J L, Weng X Y, Tang C L, Zhang Q H, Fan W, Huang Z H. The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm][DCA] and [BMIm][DCA]. Fuel, 2018, 215: 612–618

    Article  CAS  Google Scholar 

  49. Dennis J D, Willits J D, Pourpoint T L. Performance of neat and gelled monomethylhydrazine and red fuming nitric acid in an unlike-doublet combustor. Combustion Science and Technology, 2018, 190(7): 1141–1157

    Article  CAS  Google Scholar 

  50. Xia Y Z, Yang W D, Hong L, Wang Y. Experimental study on spray characteristic of gelled methylhydrazine/nitrogen tetroxide. Journal of Propulsion Technology, 2019, 40(12): 2755–2761

    Google Scholar 

  51. Guan H S, Li G X, Zhang N Y. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant. Acta Astronautica, 2018, 144: 119–125

    Article  CAS  Google Scholar 

  52. E X-T-F, Pan L, Wang F, Wang L, Zhang X, Zou J J. Alnanoparticle-containing nanofluid fuel: synthesis, stability, properties, and propulsion performance. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745

    Article  CAS  Google Scholar 

  53. E X-T-F, Zhi X, Zhang Y, Li C, Zou J J, Zhang X, Wang L. Jet fuel containing ligand-protecting energetic nanoparticles: a case study of boron in JP-10. Chemical Engineering Science, 2015, 129: 9–13

    Article  CAS  Google Scholar 

  54. Zou J J. Prospectives for improving the energy density of liquid fuels. Chinese Journal of Energetic Materials, 2020, 28(5): 366–368

    Google Scholar 

  55. Yu X D, Chen L M, Zhang M M, Yi T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chemical Society Reviews, 2014, 43(15): 5346–5371

    Article  CAS  PubMed  Google Scholar 

  56. McNeice P, Zhao Y Y, Wang J X, Donnelly G F, Marr P C. Low molecular weight gelators (LMWGs) for ionic liquids: the role of hydrogen bonding and sterics in the formation of stable low molecular weight ionic liquid gels. Green Chemistry, 2017, 19(19): 4690–4697

    Article  CAS  Google Scholar 

  57. Padwal M B, Mishra D P. Synthesis of Jet A1 gel fuel and its characterization for propulsion applications. Fuel Processing Technology, 2013, 106: 359–365

    Article  CAS  Google Scholar 

  58. Cao J W, Zhang Y C, Pan L, Shi C X, Zhang X W, Zou J J. Synthesis and characterization of gelled high-density fuels with low-molecular mass gellant. Propellants, Explosives, Pyrotechnics, 2020, 45(7): 1018–1025

    Article  CAS  Google Scholar 

  59. Naseem M S, Jyoti B V S, Baek S W, Lee H J, Cho S J. Hypergolic studies of ethanol based gelled bi-propellant system for propulsion application. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 676–682

    Article  CAS  Google Scholar 

  60. Shoaib M N, Jyoti B V S, Baek S W, Huh J. Effect of alcohol carbon chain on enthalpy of combustion and ignition delay time for gelled hypergolic propellant system. Propellants, Explosives, Pyrotechnics, 2018, 43(5): 453–460

    Article  CAS  Google Scholar 

  61. Connell T LJr, Risha G A, Yetter R A, Natan B. Ignition of hydrogen peroxide with gel hydrocarbon fuels. Journal of Propulsion and Power, 2018, 34(1): 170–181

    Article  CAS  Google Scholar 

  62. Connell T LJr, Risha G A, Yetter R A, Natan B. Hypergolic ignition of hydrogen peroxide/gel fuel impinging jets. Journal of Propulsion and Power, 2017, 34(1): 182–188

    Article  Google Scholar 

  63. Natan B, Solomon Y, Perteghella V. Hypergolic ignition by fuel gellation and suspension of reactive or catalyst particles. Journal of Propulsion and Power, 2011, 27(5): 1145–1148

    Article  CAS  Google Scholar 

  64. Yang D L, Xia Z X, Huang L Y, Ma L K, Chen B B, Feng Y C. Synthesis of metallized kerosene gel and its characterization for propulsion applications. Fuel, 2020, 262: 116684

    Article  CAS  Google Scholar 

  65. Jejurkar S Y, Yadav G, Mishra D P. Characterization of impinging jet sprays of gelled propellants loaded with nanoparticles in the impact wave regime. Fuel, 2018, 228: 10–22

    Article  CAS  Google Scholar 

  66. Gafni G, Kuznetsov A, Har-Lev D, Natan B. Experimental investigation of a ramjet combustor using an aluminized gel fuel. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Washington D.C.: AIAA, 2013, 1–19

    Google Scholar 

  67. Coguill S L. Synthisis of highly loaded gelled propellants. In: AIChE Annual Meeting. New York: John Wiley & Sons, 2003, 1–11

    Google Scholar 

  68. Nachmoni G A D, Natan B. Combustion characteristics of gel fuels. Combustion Science and Technology, 2000, 156(1): 139–157

    Article  CAS  Google Scholar 

  69. Solomon Y, Natan B. Experimental investigation of the combustion of organic-gellant-based gel fuel droplets. Combustion Science and Technology, 2006, 178(6): 1185–1199

    Article  CAS  Google Scholar 

  70. Coil M. Hypergolic ignition of a gelled ionic liquid fuel. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 2010, 1–11

    Google Scholar 

  71. Glushkov D O, Kuznetsov G V, Nigay A G, Yanovsky V A. Influence of gellant and drag-reducing agent on the ignition characteristics of typical liquid hydrocarbon fuels. Acta Astronautica, 2020, 177: 66–79

    Article  CAS  Google Scholar 

  72. Zou J J, Zhang X W, Pan L. High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis. 1st ed. New York: John Wiley & Sons, Inc., 2020, 291–375

    Book  Google Scholar 

  73. Yoon C J, Heister S D, Merkle C L, Xia G P. Simulations of plainorifice injection of gelled propellants under manifold crossflow conditions. Journal of Propulsion and Power, 2012, 29(1): 136–146

    Article  CAS  Google Scholar 

  74. Kim J Y, Song J Y, Lee E J, Park S K. Rheological properties and microstructures of Carbopol gel network system. Colloid & Polymer Science, 2003, 281(7): 614–623

    Article  CAS  Google Scholar 

  75. Kampen J V, Madlener K, Ciezki H K. Characteristic flow and spray properties of gelled fuels with regard to the impinging jet injector type. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 2006, 1–12

    Google Scholar 

  76. Madlener K, Ciezki H K. Theoretical investigation of the flow behavior of gelled fuels of the extended herschel bulkley type. In: 1st European Conference for Aero-space Sciences (EUCASS-2005). Köln: DLR, 2005

    Google Scholar 

  77. Ramasubramanian C, Notaro V, Lee J G. Characterization of near-field spray of nongelled-and gelled-impinging doublets at high pressure. Journal of Propulsion and Power, 2015, 31(6): 1642–1652

    Article  CAS  Google Scholar 

  78. Jejurkar S Y, Yadav G, Mishra D P. Visualizations of sheet breakup of non-Newtonian gels loaded with nanoparticles. International Journal of Multiphase Flow, 2018, 100: 57–76

    Article  CAS  Google Scholar 

  79. Wang F S, Chen J, Zhang T, Guan H S, Li H M. Experimental study on spray characteristics of ADN/water based gel propellant with impinging jet injectors. Propellants, Explosives, Pyrotechnics, 2020, 45(9): 1357–1365

    Article  CAS  Google Scholar 

  80. Metzner A B, Reed J C. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions. AIChE Journal. American Institute of Chemical Engineers, 1955, 1(4): 434–440

    Article  CAS  Google Scholar 

  81. Yang L J, Fu Q F, Zhang W, Du M L, Tong M X. Spray characteristics of gelled propellants in novel impinging jet injector. Journal of Propulsion and Power, 2012, 29(1): 104–113

    Article  Google Scholar 

  82. Fakhri S, Lee J G, Yetter R. Effect of nozzle geometry on the atomization and spray characteristics of gelled-propellant simulants formed by two impinging jets. Atomization and Sprays, 2010, 20(12): 1033–1046

    Article  CAS  Google Scholar 

  83. Lee I, Koo J. Break-up characteristics of gelled propellant simulants with various gelling agent contents. Journal of Thermal Science, 2010, 19(6): 545–552

    Article  CAS  Google Scholar 

  84. Chernov V, Natan B. Experimental characterization of a pulsatile injection gel spray. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Washington D.C.: AIAA, 2005, 1–14

    Google Scholar 

  85. Sadik S, Zimmels Y. On the mechanism of spray formation from liquid jets. Journal of Colloid Science, 2003, 259(2): 261–274

    Article  CAS  Google Scholar 

  86. Desyatkov A, Adler G, Prokopov O, Natan B. Atomization of gel fuels using impinging-jet atomizers. International Journal of Energetic Materials & Chemical Propulsion, 2011, 10(1): 55–65

    Article  Google Scholar 

  87. Kumar A, Sahu S. Influence of nozzle geometry on primary and large-scale instabilities in coaxial injectors. Chemical Engineering Science, 2020, 221: 115694

    Article  CAS  Google Scholar 

  88. Green J M, Rapp D C, Roncace J. Flow visualization of a rocket injector spray using gelled propellant simulants. In: 27th Joint Propulsion Conference. Washington D.C.: AIAA, 1991, 1–16

    Google Scholar 

  89. Fu Q F, Ge F, Wang W D, Yang L J. Spray characteristics of gel propellants in an open-end swirl injector. Fuel, 2019, 254: 115555

    Article  CAS  Google Scholar 

  90. Jia B Q, Fu Q F, Xu X, Yang L J, Zhang D W, Wang T H, Wang Q. Spray characteristics of Al-nanoparticle-containing nanofluid fuel in a self-excited oscillation injector. Fuel, 2021, 290: 120057

    Article  CAS  Google Scholar 

  91. Padwal M B, Mishra D P. Effect of air injection configuration on the atomization of gelled Jet A1 fuel in an air-assist internally mixed atomizer. Atomization and Sprays, 2013, 23(4): 327–341

    Article  CAS  Google Scholar 

  92. Padwal M B, Mishra D P. Performance of two-fluid atomization of gel propellant. Journal of Propulsion and Power, 2021, 15: 1–10

    Google Scholar 

  93. Padwal M B, Mishra D P. Internal breakup of an inelastic and shear thinning non-Newtonian fluid by vortical flow of air. In: 14th Triennial International Conference on Liquid Atomization and Spray Systems. Redding: Begell House Inc., 2018, 1–8

    Google Scholar 

  94. Glushkov D O, Pleshko A O, Yashutina O S. Influence of heating intensity and size of gel fuel droplets on ignition characteristics. International Journal of Heat and Mass Transfer, 2020, 156: 119895

    Article  CAS  Google Scholar 

  95. Bar-or D, Natan B. The effect of ambient conditions on the burning rate of gel fuel droplets. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 199–203

    Article  CAS  Google Scholar 

  96. Prakash S, Sirignano W A. Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase. International Journal of Heat and Mass Transfer, 1980, 23(3): 253–268

    Article  CAS  Google Scholar 

  97. Tong A Y, Sirignano W A. Analytical solution for diffusion and circulation in a vaporizing droplet. Symposium (International) on Combustion, 1982, 19(1): 1007–1020

    Article  Google Scholar 

  98. Law C K. Unsteady droplet combustion with droplet heating. Combustion and Flame, 1976, 26: 17–22

    Article  Google Scholar 

  99. Spalding D B. The combustion of liquid fuels. Proceedings of the Combustion Institute, 1953, 4(1): 847–864

    Article  Google Scholar 

  100. Godsave G A E. Studies of the combustion of drops in a fuel spray- the burning of single drops of fuel. Proceedings of the Combustion Institute, 1953, 4(1): 818–830

    Article  Google Scholar 

  101. Mishra D P, Patyal A, Padhwal M. Effects of gellant concentration on the burning and flame structure of organic gel propellant droplets. Fuel, 2011, 90(5): 1805–1810

    Article  CAS  Google Scholar 

  102. Kunin A, Natan B, Greenberg J B. Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets. Journal of Propulsion and Power, 2010, 26(4): 765–771

    Article  CAS  Google Scholar 

  103. Glushkov D O, Kuznetsov G V, Nigay A G, Yashutina O S. Heat and mass transfer induced by the ignition of single gel propellant droplets. Journal of the Energy Institute, 2019, 92(6): 1944–1955

    Article  CAS  Google Scholar 

  104. Cao Q L, Liao W H, Wu W T, Feng F. Combustion characteristics of inorganic kerosene gel droplet with fumed silica as gellant. Experimental Thermal and Fluid Science, 2019, 103: 377–384

    Article  CAS  Google Scholar 

  105. Mordosky J W, Zhang B Q, Harting G C, Tepper F, Kaledin L A. Combustion of gelled RP-1 propellant with alex® particles in gaseous oxygen atomized sprays. Journal of Energetic Materials & Chemical Propulsion, 2002, 5(1–6): 206–218

    Article  Google Scholar 

  106. Tepper F, Kaledin L A. Combustion characteristics of kerosene containing alex nano-aluminum. Journal of Energetic Materials & Chemical Propulsion, 2002, 5(1–6): 195–205

    Article  Google Scholar 

  107. Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet. Progress in Propulsion Physics, 2011, 2: 499–518

    Article  Google Scholar 

  108. Xiao Y L, Xia Z X, Huang L Y, Ma L K, Yang D L. Experimental investigation of the effects of chamber length and boron content on boron-based gel fuel ramjet performance. Acta Astronautica, 2019, 160: 101–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Jun Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Cao, J., Pan, L. et al. Review on design, preparation and performance characterization of gelled fuels for advanced propulsion. Front. Chem. Sci. Eng. 16, 819–837 (2022). https://doi.org/10.1007/s11705-021-2122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2122-2

Keywords

Navigation