Skip to main content
Log in

Topography and Land Management Change the Heterogeneity of Soil Available Nitrogen in a Mollisol Watershed of Northeastern China

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil available nitrogen (AN) is highly related to crop growth and N leaching in the agricultural environment, but the heterogeneity of AN and its driving mechanisms have not been clarified in the Mollisols region. In this study, a total of 610 soil samples were collected from 0‒60 cm soil depths in a small watershed (1.86 km2) of northeastern China, and both traditional statistics and geostatistical methods were used to analyze how topographic factors and land managements influence the spatial heterogeneity of soil AN. The results showed that spatial autocorrelation (C0/[C + C0]) of AN has a moderate level in 0‒20 cm (34.1%) and 20‒30 cm (37.3%), and a strong level in 40‒50 cm (15.8%) soil depths. AN was highest on the bottom, followed by the summit and the middle slope across all aspects in 0‒20 cm soil depths, but not consistent at 20‒60 cm soil depths. The slope steepness of 6‒8% was an inflection point (increase/decrease) of AN dynamic under different tillage systems. The horizontal and vertical distribution of AN may be influenced by the plough pan (near 30 cm soil depths). Forestland tends to reduce N loss to the lower slope position in watershed scale. Generally, to increase crop yield, reasonable fertilization and conservation tillage should be applied on the middle slope to counteract the low AN content. On the other hand, to reduce N loss, management of areas with high AN should be a priority, such as the bottom of slopes, places where land uses intersect, and watershed outlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Abbas, H. Zhou, Q. Zhang, Y. Li, Y. Liang, H. Di, and Y. Zhao, “Anammox co-fungi accompanying denitrifying bacteria are the thieves of the nitrogen cycle in paddy-wheat crop rotated soils,” Environ. Int. 130, 104913 (2019). https://doi.org/10.1016/j.envint.2019.104913

    Article  Google Scholar 

  2. S.D. Bao, “Soil agriculture chemical elements analysis,” in Soil Nitrogen and Sulfur Analysis (Beijing, 2000), pp. 56‒58.

  3. S. K. Behera, R. K. Mathur, A. K. Shukla, K. Suresh, and C. Prakash, “Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India,” Catena 165, 251‒259 (2018). https://doi.org/10.1016/j.catena.2018.02.008

    Article  Google Scholar 

  4. N. C. Brady and R. R. Weil, Nature and Properties of Soils (Macmillan, New York, 2000), pp. 392‒393.

    Google Scholar 

  5. C. A. Cambardella, T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco, and A.E. Konopka, “Field-scale variability of soil properties in central Iowa soils,” Soil Sci. Soc. Am. J. 58 (5), 1501‒1511 (1994). https://doi.org/10.2136/sssaj1994.03615995005800050033x

    Article  Google Scholar 

  6. K. G. Cassman and D. N. Munns, “Nitrogen mineralization as affected by soil‒moisture, temperature, and depth,” Soil Sci. Soc. Am. J. 44 (6), 1233‒1237 (1980). https://doi.org/10.2136/sssaj1980.03615995004400060020x

    Article  Google Scholar 

  7. T. Chen, Q. Chang, J. Liu, and J. G. P. W. Clevers, “Spatio‒temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: a case study in Heyang County,” Environ. Earth Sci. 75 (1), (2016). https://doi.org/10.1007/s12665-015-4786-8

  8. Y. G. Chendev, A. N. Gennadiev, S. V. Lukin, T. J. Sauer, E. A. Zazdravnykh, V. G. Belevantsev, and M. A. Smirnova, “Change of forest-steppe chernozems under the influence of shelterbelts in the south of the Central Russian Upland,” Eurasian Soil Sci. 53, 1033‒1045 (2020). https://doi.org/10.1134/s1064229320080037

    Article  Google Scholar 

  9. G. D. Chimitdorzhieva, E. O. Chimitdorzhieva, E. Y. Milkheev, Yu. B. Tsybenov, A. V. Dmitriev, T. N. Chimitdorzhiev, R. A. Egorova, Z. A. Soldatova, D. B. Andreeva, T. D. T. Korsunova, and T. V. Davydova, “Soils of cryogenic landforms in the south of the Vitim Plateau: Distribution and role in the allocation of soil carbon pools,” Eurasian Soil Sci. 52, 1019‒1027 (2019). https://doi.org/10.1134/s1064229319090023

    Article  Google Scholar 

  10. P. Dang, Y. Gao, J. Liu, S. Yu, and Z. Zhao, “Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau,” Sci. Total Environ. 630, 171‒180 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.197

    Article  Google Scholar 

  11. W. C. Dong, F. F. Cai, Q. Fu, C. P. Cao, X. Meng, and X. Y. Yang, “Effect of soybean roots and a plough pan on the movement of soil water along a profile during rain,” Appl. Water Sci. 9 (5), 138 (2019). https://doi.org/10.1007/s13201-019-1025-6

    Article  Google Scholar 

  12. F. J. Gao, Q. L. Ma, Z. M. Zhang, W. W. Han, S. Zhang, P. M. Shan, J. Zhou, and M. L. Qu, “Spatial distribution of soil nitrogen and its main in driving factors in a mollisol watershed of China,” Acta Sci. Circumstantiae 36, 2990‒2999 (2016).

    Google Scholar 

  13. P. Gao, B. Wang, G. Geng, and G. Zhang, “Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China,” PLoS One 8 (12), 1‒9 (2013). https://doi.org/10.1371/journal.pone.0083592

    Article  Google Scholar 

  14. P. Goovaerts, “Geostatistics in soil science: state-of-the-art and perspectives,” Geoderma 89 (1‒2), 1‒45 (1999). https://doi.org/10.1016/s0016-7061(98)00078-0

    Article  Google Scholar 

  15. F. Guan, M. Xia, X. Tang, and S. Fan, “Spatial variability of soil nitrogen, phosphorus and potassium contents in Moso bamboo forests in Yong’an City, China,” Catena 150, 161‒172 (2017). https://doi.org/10.1016/j.catena.2016.11.017

    Article  Google Scholar 

  16. P. T. Guo, W. Wu, H. B. Liu, and M. F. Li, “Effects of land use and topographical attributes on soil properties in an agricultural landscape,” Soil Res. 49 (7), 606‒613 (2011). https://doi.org/10.1071/sr11134

    Article  Google Scholar 

  17. F. P. Han, J. Y. Zheng, W. Hu, F. Du, and X. C. Zhang, “Spatial variability and distribution of soil nutrients in a catchment of the Loess Plateau in China,” Acta Agric. Scand., Sect. B 60 (1), 48‒56 (2010). https://doi.org/10.1080/09064710802613065

    Article  Google Scholar 

  18. M. Karamesouti, G. P. Petropoulos, I. D. Papanikolaou, O. Kairis, and K. Kosmas, “Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: comparison & implications,” Geoderma 261, 44‒58 (2016). https://doi.org/10.1016/j.geoderma.2015.06.025

    Article  Google Scholar 

  19. D. G. Krige, “A statistical approach to some basic mine valuation problems on the witwatersrand,” J. South. Afr. Inst. Min. Metall. 94 (3), 95‒111 (1994).

    Google Scholar 

  20. S. Kumar and R. P. Singh, “Spatial distribution of soil nutrients in a watershed of Himalayan landscape using terrain attributes and geostatistical methods,” Environ. Earth Sci. 75 (6), 473 (2016). https://doi.org/10.1007/s12665-015-5098-8

    Article  Google Scholar 

  21. H. L. Li and L. Ji, “Effect of slope gradients on erosion of black soil under simulated rainfall conditions in Northeast China,” J. Jilin Agric. Sci. 40, 51‒54, 58 (2015).

  22. Q. Li, Z. Jia, Y. Zhu, Y. Wang, H. Li, D. Yang, and X. Zhao, “Spatial heterogeneity of soil nutrients after the establishment of Caragana intermedia plantation on sand dunes in alpine sandy land of the Tibet Plateau,” PLoS One 10 (5), 1‒12 (2015). https://doi.org/10.1371/journal.pone.0124456

    Article  Google Scholar 

  23. X. Liu, C. L. Burras, Y. S. Kravchenko, A. Duran, T. Huffman, H. Morras, G. Studdert, X. Zhang, R. M. Cruse, and X. Yuan, “Overview of mollisols in the world: distribution, land use and management,” Can. J. Soil Sci. 92 (3), 383‒402 (2012). https://doi.org/10.4141/cjss2010-058

    Article  Google Scholar 

  24. Z. P. Liu, M. A. Shao, and Y. Q. Wang, “Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China,” Geoderma 197, 67‒78 (2013). https://doi.org/10.1016/j.geoderma.2012.12.011

    Article  Google Scholar 

  25. N. Mei, B. Yang, P. Tian, Y. Jiang, P. Sui, D. Sun, Z. Zhang, and H. Qi, “Using a modified soil quality index to evaluate densely tilled soils with different yields in Northeast China,” Environ. Sci. Pollut. Res. 26 (14), 13867‒13877 (2019). https://doi.org/10.1007/s11356-018-3946-2

    Article  Google Scholar 

  26. S. Mirzaee, S. Ghorbani‒Dashtaki, J. Mohammadi, H. Asadi, and F. Asadzadeh, “Spatial variability of soil organic matter using remote sensing data,” Catena 145, 118‒127 (2016). https://doi.org/10.1016/j.catena.2016.05.023

    Article  Google Scholar 

  27. H. Nagano, S. Sugihara, M. Matsushima, S. Okitsu, V. E. Prikhodko, E. Manakhova, G. B. Zdanovich, D. V. Manakhov, I. V. Ivanov, S. Funakawa, M. Kawahigashi, and K. Inubushi, “Carbon and nitrogen contents and greenhouse gas fluxes of the Eurasian steppe soils with different land use histories located in the Arkaim museum reserve of South Ural, Russia,” Soil Sci. Plant Nutr. 58 (2), 238‒244 (2012). https://doi.org/10.1080/00380768.2012.661354

    Article  Google Scholar 

  28. D. R. Nielsen and J. Bouma, “Soil spatial variability,” in Proceedings of a Workshop of the ISSS and the SSSA, Las Vegas, USA, November 30‒December 1, 1984 (Wageningen, 1985).

  29. M. A. Oliver and R. Webster, “A tutorial guide to geostatistics: computing and modelling variograms and Kriging,” Catena 113, 56‒69 (2014). https://doi.org/10.1016/j.catena.2013.09.006

    Article  Google Scholar 

  30. T. Pandiaraj, S. Selvaraj, and N. Ramu, “Effects of crop residue management and nitrogen fertilizer on soil nitrogen and carbon content and productivity of wheat (Triticum aestivum L.) in two cropping systems,” J. Agric. Sci. Tech. Iran 17 (1), 249‒260 (2015).

    Google Scholar 

  31. A. Piotrowska-Dlugosz, A. Siwik-Ziomek, J. Dlugosz, and D. Gozdowski, “Spatio-temporal variability of soil sulfur content and arylsulfatase activity at a conventionally managed arable field,” Geoderma 295, 107‒118 (2017). https://doi.org/10.1016/j.geoderma.2017.02.009

    Article  Google Scholar 

  32. M. Rahimi, B. Rabiei, M. Ramezani, and S. Movafegh, “The effect of preceding crop, nitrogen fertilizer and return of crop residue on growth and yield of wheat,” Iran. J. Field Crops Res. 8 (1), 111‒119 (2010). https://doi.org/https://doi.org/10.22067/gsc.v8i1.7399

    Google Scholar 

  33. G. H. Rubaek, K. Kristensen, S. E. Olesen, H. S. Ostergaard, and G. Heckrath, “Phosphorus accumulation and spatial distribution in agricultural soils in Denmark,” Geoderma 209, 241‒250 (2013). https://doi.org/10.1016/j.geoderma.2013.06.022

    Article  Google Scholar 

  34. Q. S. Shen, Y. Wang, X. R. Wang, X. Liu, X. Y. Zhang, and S. L. Zhang, “Comparing interpolation methods to predict soil total phosphorus in the mollisol area of Northeast China,” Catena 174, 59‒72 (2019). https://doi.org/10.1016/j.catena.2018.10.052

    Article  Google Scholar 

  35. L. H. Shrewsbury, J. L. Smith, D. R. Huggins, L. Carpenter-Boggs, and C. L. Reardon, “Denitrifier abundance has a greater influence on denitrification rates at larger landscape scales but is a lesser driver than environmental variables,” Soil Biol. Biochem. 103, 221–231 (2016). https://doi.org/10.1016/j.soilbio.2016.08.016

    Article  Google Scholar 

  36. A. Siczek and J. Lipiec, “Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching,” Soil Tillage Res. 114 (1), 50‒56 (2011). https://doi.org/10.1016/j.still.2011.04.001

    Article  Google Scholar 

  37. Sorokin, P. Owens, V. Láng, Z. D. Jiang, E. Michéli, and P. Krasilnikov, “Black soils in the Russian Soil Classification system, the US Soil Taxonomy and the WRB: quantitative correlation and implications for pedodiversity assessment,” Catena 196, 104824 (2021). https://doi.org/10.1016/j.catena.2020.104824

    Article  Google Scholar 

  38. L. Sun, Z. Xia, C. Sang, X. Wang, B. Peng, C. Wang, J. Zhang, C. Mueller, and E. Bai, “Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture,” Biol. Fertil. Soils 55 (6), 629‒641 (2019). https://doi.org/10.1007/s00374-019-01379-2

    Article  Google Scholar 

  39. J. Wang, R. Yang, and Z. Bai, “Spatial variability and sampling optimization of soil organic carbon and total nitrogen for minesoils of the Loess Plateau using geostatistics,” Ecol. Eng. 82, 159‒164 (2015). https://doi.org/10.1016/j.ecoleng.2015.04.103

    Article  Google Scholar 

  40. Q. Wang, J. Wen, Y. Wen, Y. Zhang, N. Zhang, Y. Wang, L. Bai, S. Su and X. Zeng, “Alteration of soil-surface electrochemical properties by organic fertilization to reduce dissolved inorganic nitrogen leaching in paddy fields,” Soil Tillage Res. 209, 104956 (2021). https://doi.org/10.1016/j.still.2021.104956

    Article  Google Scholar 

  41. T. Wang, F. Kang, X. Cheng, H. Han, Y. Bai, and J. Ma, “Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China,” Catena 155, 41‒52 (2017). https://doi.org/10.1016/j.catena.2017.03.004

    Article  Google Scholar 

  42. Y. Wang, Z. Xiao, M. Aurangzeib, X. Zhang, and S. Zhang, “Effects of freeze-thaw cycles on the spatial distribution of soil total nitrogen using a geographically weighted regression Kriging method,” Sci. Total Environ. 763, 142993 (2020). https://doi.org/10.1016/j.scitotenv.2020.142993

    Article  Google Scholar 

  43. H. F. Wilson, S. Satchithanantham, A. P. Moulin, and A. J. Glenn, “Soil phosphorus spatial variability due to landform, tillage, and input management: a case study of small watersheds in southwestern Manitoba,” Geoderma 280, 14‒21 (2016). https://doi.org/10.1016/j.geoderma.2016.06.009

    Article  Google Scholar 

  44. X. L. Yang, B. Zhu and Y. L. Li, “Spatial and temporal patterns of soil nitrogen distribution under different land uses in a watershed in the hilly area of purple soil, China,” J. Mt. Sci. Engl. 10 (3), 410‒417 (2013). https://doi.org/10.1007/s11629-013-2712-7

    Article  Google Scholar 

  45. X. Yao, K. Yu, Y. Deng, Q. Zeng, Z. Lai, and J. Liu, “Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China,” Catena 178, 189‒198 (2019). https://doi.org/10.1016/j.catena.2019.03.004

    Article  Google Scholar 

  46. A. Zavalin, V. K. Dridiger, V. P. Belobrov, and S. A. Yudin, “Nitrogen in chernozems under traditional and direct seeding cropping systems: a review,” Eurasian Soil Sci. 51, 1497‒1506 (2018). https://doi.org/10.1134/s1064229318120141

    Article  Google Scholar 

  47. J. Zawadzki and P. Fabijanczyk, “Geostatistical evaluation of lead and zinc concentration in soils of an old mining area with complex land management,” Int. J. Environ. Sci. Technol. 10 (4), 729‒742 (2013). https://doi.org/10.1007/s13762-012-0132-9

    Article  Google Scholar 

  48. J. Zhang, P. Li, C. Jia, Z. Li, H. Tang, and Y. Yang, “Distribution of soil nitrogen and its relationship with particle size along the Dan River valley, China,” Environ. Earth Sci. 75 (5), 406 (2016). https://doi.org/10.1007/s12665-016-5293-2

    Article  Google Scholar 

  49. S. L. Zhang, J. Huang, Y. Wang, Q. S. Shen, L. L. Mu, and Z. H. Liu, “Spatiotemporal heterogeneity of soil available nitrogen during crop growth stages on mollisol slopes of northeast China,” Land Degrad. Dev. 28 (3), 856‒869 (2017). https://doi.org/10.1002/ldr.2610

    Article  Google Scholar 

  50. S. L. Zhang, T. Huffman, X. Y. Zhang, W. Liu, and Z. H. Liu, “Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus,” J. Soil. Sediments 14 (11), 1775‒1789 (2014). https://doi.org/10.1007/s11368-014-0935-z

    Article  Google Scholar 

  51. S. L. Zhang, L. L. Yan, J. Huang, L. L. Mu, Y. Q. Huang, X. Y. Zhang, and Y. K. Sun, “Spatial heterogeneity of soil C:N ratio in a mollisol watershed of Northeast China,” Land Degrad. Dev. 27 (2), 295‒304 (2016). https://doi.org/10.1002/ldr.2427

    Article  Google Scholar 

  52. S. L. Zhang, X. Y. Zhang, T. Huffman, X. B. Liu, and J. Y. Yang, “Influence of topography and land management on soil nutrients variability in Northeast China,” Nutr. Cycl. Agroecosyst. 89 (3), 427‒438 (2011). https://doi.org/10.1007/s10705-010-9406-0

    Article  Google Scholar 

  53. S. L. Zhang, X. Y. Zhang, Z. H. Liu, Y. K. Sun, W. Liu, L. Dai, and S. Fu, “Spatial heterogeneity of soil organic matter and soil total nitrogen in a mollisol watershed of Northeast China,” Environ. Earth Sci. 72 (1), 275‒288 (2014). https://doi.org/10.1007/s12665-014-3081-4

    Article  Google Scholar 

  54. S. R. Zhang, C. L. Xia, T. Li, C. G. Wu, O. P. Deng, Q. M. Zhong, X. X. Xu, Y. Li, and Y. X. Jia, “Spatial variability of soil nitrogen in a hilly valley: multiscale patterns and affecting factors,” Sci. Total Environ. 563, 10‒18 (2016). https://doi.org/10.1016/j.scitotenv.2016.04.111

    Article  Google Scholar 

  55. X. Y. Zhang, Y. Y. Sui, X. D. Zhang, K. Meng, and S. J. Herbert, “Spatial variability of nutrient properties in black soil of northeast China,” Pedosphere 17 (1), 19‒29 (2007). https://doi.org/10.1016/s1002-0160(07)60003-4

    Article  Google Scholar 

  56. Y. T. Zhang, H. B. Liu, H. Y. Wang, L. M. Zhai, K. Liu, Q. L. Lei, and T. Z. Ren, “A bibliometric analysis of status and trend of international research on field nitrogen application effects on nitrogen losses and water quality,” Acta Ecol. Sin. 36 (20), 6664‒6676 (2016).

    Google Scholar 

  57. Z. M. Zhang, X. X. Yu, S. Qian, and J. W. Li, “Spatial variability of soil nitrogen and phosphorus of a mixed forest ecosystem in Beijing, China,” Environ. Earth Sci. 60 (8), 1783‒1792 (2010). https://doi.org/10.1007/s12665-009-0314-z

    Article  Google Scholar 

  58. Y. Zhu, D. Wang, X. Wang, W. Li, and P. Shi, “Aggregate‒associated soil organic carbon dynamics as affected by erosion and deposition along contrasting hillslopes in the Chinese Corn Belt,” Catena 199, 105106 (2021). https://doi.org/10.1016/j.catena.2020.105106

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was sponsored by National Natural Science Foundation of China (41771313, 42177321). We thank the anonymous reviewers for helpful comments and suggestions which improved the quality of the manuscript. We thank Dr. Qiang Chen from Harbin Normal University for providing the data of particle size distribution of soils. We thank Nwabuisi Simon Onyekachi from Xiamen University for his assistance in English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoliang Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao Wang, Aurangzeib, M. & Zhang, S. Topography and Land Management Change the Heterogeneity of Soil Available Nitrogen in a Mollisol Watershed of Northeastern China. Eurasian Soil Sc. 55, 200–211 (2022). https://doi.org/10.1134/S1064229322020132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322020132

Keywords:

Navigation