Skip to main content
Log in

The Physicochemical and Geodynamic Conditions of Formation of the Sarsangi Complex in the Boundary Zone between the Middle and Southern Urals

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract—This article describes the geological structure of the Sarsangi gabbro–diorite–plagiogranite complex located in the boundary zone between the Middle and South Urals. The formation of its massifs took place in the Late Silurian in the abyssal zone at approximately 6.5–7.0 km. The temperature ranges of crystallization of granodiorites and gabbro were 900–990°С and 1180–1280°С, respectively. The pressure in the system at that time was 190–200 MPa. Gabbroids in the massifs were formed under conditions of extension of the oceanic crust. In terms of petrogeochemistry, they correspond to rocks that compose the basement of island arcs and belong to the ophiolite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig.3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bergman, I.A., Kolesov, G.M., and Vorob’ev, V.S., On rare-earth element geochemistry in the Precambrian banded iron formations in relation with problem of their genesis, Geokhimiya, 1985, no. 6, pp. 821–833.

  2. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, in Fluid Inclusions in Minerals: Methods and Applications, De Vivo, B. and Frezzotti, M.L., Eds., Pontignano-Siena, 1994, pp. 117–130.

    Google Scholar 

  3. Borneman-Starynkevich, I.D., Rukovodstvo po raschetu formul mineralov (Manual for Calculation of Mineral Formulas), Moscow: Nauka, 1964.

  4. Borodin, L.S., Model system of petrochemical and metallogenic trends of granitoids as a basis for the prognosis of Sn, Li, Ta, Nb, W, Mo, and Cu deposits, Geol. Ore Deposits, 2004, vol. 46, no. 1, pp. 3–26.

    Google Scholar 

  5. Bortnikov, N.S., Geochemistry and origin of the ore-forming fluids in hydrothermal-magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–22.

    Article  Google Scholar 

  6. Fershtater, G.B., Paleozoiskii intruzivnyi magmatizm Srednego i Yuzhnogo Urala (Paleozoic Intrusive Magmatism of the Middle and Southern Urals), Yekaterinburg: RIO UrO RAN, 2013.

  7. Frezzotti, M.L., Silicate-melt inclusions in magmatic rocks: Applications to petrology, Lithos, 2001, vol. 55, pp. 273–299.

    Article  Google Scholar 

  8. Geodinamicheskie rekonstruktsii (Geodynamic Reconstructions), Unksov, V.A., Ed., Leningrad: Nedra, 1989.

  9. Koval’, P.V. and Prokof’ev, V.Yu., The T–P conditions of crystallization of granitoids in the Mongol-Okhotsk zone: Evidence from studies of melt and fluid inclusions, Petrologiya, 1998, vol. 6, no. 5, pp. 497–511.

  10. Kovalev, S.G., Snachev, V.I., and Romanovskaya, M.A., New geological and petrogenetic aspects of the formation of the Kusa–Kopan complex, Vestn. Mosk. Univ., Ser. 4: Geol., 1995, no. 4, pp. 81–85.

  11. Lemmlein, G.G. and Klevtsov, P.V., The effect of concentration on the homogenization temperatures of the systems, consisting of salt aqueous solutions, Zap. Vses. Mineral. O-va, 1956, vol. 3, pp. 310–320.

    Google Scholar 

  12. Lindsley, D.H., Pyroxene thermometry, Am. Mineral., 1983, vol. 68, pp. 477–493.

    Google Scholar 

  13. Mel’nikov, F.P., Prokof’ev, V.Yu., and Shatagin, N.N., Termobarogeokhimiya (Thermobarogeochemistry), Moscow: Akad. Proekt, 2008.

    Google Scholar 

  14. Naumov, V.B., Thermometric study of melt inclusions in quartz phenocrysts from quartz porphyries, Geokhimiya, 1969, no. 4, pp. 494–498.

  15. Naumov, V.B., Determination of concentration and pressure of volatiles in magmatic melts based on inclusions in minerals, Geokhimiya, 1979, no. 7, pp. 997–1007.

  16. Orlov, D.M., Lipner, G.N., Orlova, M.P., and Smelova, L.V., Petrokhimiya magmaticheskikh formatsii: Sprav. Posobie (Petrochemistry of Magmatic Formations. Handbook), Leningrad: Nedra, 1991.

  17. Pearce, Ju.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonics interpretation of granitic rocks, J. Petrol., 1984, vol. 25, no. 4, pp. 956–983.

    Article  Google Scholar 

  18. Perchuk, L.L. and Ryabchikov, I.D., Fazovoe sootvetstvie v mineral’nykh sistemakh (Phase Correspondence in Mineral Systems), Moscow: Nedra, 1976.

  19. Poldervaart, A. and Hess, H.H., Pyroxenes in the crystallization basaltic magma, J. Geol., 1951, vol. 59, no. 5, pp. 472–489.

    Article  Google Scholar 

  20. Prokofiev, V.Yu. and Pek, A.A., Problems in estimation of the formation depth of hydrothermal deposits by data on pressure of mineralizing fluids, Geol. Ore Deposits, 2015, vol. 57, no. 1, pp. 1–20.

    Article  Google Scholar 

  21. Puchkov, V.N., General regularities of localization of mineral deposits in the Urals: What, where, when and why? Ore Geol. Rev., 2017, vol. 85, pp. 4–29.https://doi.org/10.1016/j.oregeorev.2016.01.005

    Article  Google Scholar 

  22. Puchkov, V.N., Rapoport, M.S., Fershtater, G.B., and Anan’eva, E.M., The tectonic control of the Paleozoic granitoid magmatism on the eastern slope of the Urals, in Issledovaniya po petrologii i metallogenii Urala (The Study of Petrology and Metallogeny of the Urals), Sverdlovsk: IGG UNTs AN SSSR, 1986, pp. 85–95.

  23. Putirka, K.D. and Tepley, F.J., Minerals, inclusions and volcanic processes, Rev. Mineral. Geochem., 2008, vol. 69.

  24. Puzhakov, B.A., Kuznetsov, N.S., and Shokh, V.D., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. 2-e izd. Ser. Yuzhno-Ural’skaya. List N-41-II (Kunashak). Ob”yasn. Zap. (The 1 : 200 000 State Geological Map of the Russian Federation (2nd ed.). Ser. Yuzhnouralsk. Sheet N-41-II (Kunashak). Explanatory Note), Moscow: Mosk. Fil. FGBU “VSEGEI”, 2018.

  25. Reif, F.G. and Bazheev, E.D., Magmaticheskii protsess i vol’framovoe orudenenie (Magmatic Process and Tungsten Mineralization), Novosibirsk: Nauka, 1982.

  26. Rollinson, H.R., Using Geochemical Data: Evaluation, Presentation, Interpretation, London: Longman Group UK Ltd., 1993.

    Google Scholar 

  27. Savel’ev, D.E., Puchkov, V.N., Ardislamov, F.R., and Snachev, V.I., Volcanic rocks of Middle Riphean Mashak suite: Geology and petrogeochemistry, Litosfera, 2009, no. 4, pp. 3–26.

  28. Shervais, J., Ti–V plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sci. Lett., 1982, vol. 59, pp. 101–118.

    Article  Google Scholar 

  29. Snachev, A.V., Puchkov, V.N., Snachev, V.I., et al., Bol’shakovskii gabbro massif as a fragment of the Southern Urals Zone of Early Carboniferous Rift, Dokl. Earth Sci., 2009, vol. 429, no. 1, pp. 1267–1269.

    Article  Google Scholar 

  30. Termo- i barometriya metamorficheskikh porod (Thermo- and Barometry of Metamorphic Rocks) Glebovitskii, V.A., Ed., Leningrad: Nauka, 1977.

    Google Scholar 

  31. Vikent’eva, O.V., Prokofiev, V.Y., and Gamyanin, G.N., et al., Intrusion-related gold–bismuth deposits of North–East Russia: PTx parameters and sources of hydrothermal fluids, Ore Geol. Rev., 2018, vol. 102, pp. 240–259.

    Article  Google Scholar 

  32. Wang, T., Guo, L., and Zhang, L., et el., Granitoid and tectonics, Acta Petrol. Sinica, 2017, vol. 33, no. 5, pp. 1459–1478.

    Google Scholar 

  33. Wood, B.J. and Banno, S., Garnet-orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems, Contrib. Mineral. Petrol., 1973, vol. 42, pp. 109–124.

    Article  Google Scholar 

  34. Zaitsev, A.I., Fridovsky, V.Yu., and Kudrin, M.V., Granitoids of the Ergelyakh intrusion–related gold–bismuth deposit (Kular-Nera Slate Belt, Northeast Russia): Petrology, physicochemical parameters of formation, and ore potential, Minerals, 2019, vol. 9, no. 5, pp. 297–332.

    Article  Google Scholar 

  35. Zhu, Y., An, F., and Tan, J., Geochemistry of hydrothermal gold deposits: A review, Geosci. Front., 2011, vol. 2, pp. 367–374.

    Article  Google Scholar 

Download references

Funding

This work was performed within the framework of a state assignment (project no. 0246-2019-0078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Snachev, A. V. Snachev, B. A. Puzhakov or M. A. Romanovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Voroshchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snachev, V.I., Snachev, A.V., Puzhakov, B.A. et al. The Physicochemical and Geodynamic Conditions of Formation of the Sarsangi Complex in the Boundary Zone between the Middle and Southern Urals. Moscow Univ. Geol. Bull. 76, 556–565 (2021). https://doi.org/10.3103/S0145875221050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875221050124

Keywords:

Navigation