Skip to main content
Log in

The Paleoclimate Evolution of Central and Eastern Tethys in the Jurassic–Quaternary

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract—

The paleotemperature curves for water masses and average annual temperatures have been plotted for the first time on the basis of original and published data for the Central and Eastern Tethys for the Jurassic–Quaternary period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Akhmetiev, M.A. and Beniamovsky, V.N., The Paleocene and Eocene in the Russian part of West Eurasia, Stratigr. Geol. Correl., 2006, vol. 14, pp. 49–72.

    Article  Google Scholar 

  2. Ali-Zade, Ak.A. and Aliev, S.A., Isotope paleotemperatures of Aptian basins of Southeastern Caucasus, Geokhimiya, 1975, no. 10, pp. 1585–1589.

  3. Alsenz, H., Regnery, J., Ashckenazi-Polivoda, S., et al., Sea surface temperature record of a Late Cretaceous tropical Southern Tethys upwelling system, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2013, vol. 392, pp. 350–358.

    Article  Google Scholar 

  4. Badulina, N.V., Yakovishina, E.V., Gabdullin, R.R., et al., Lithological and geochemical charateristics and origin conditions of Upper Cretaceous of Northern Peritethys, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2016, nos. 4–5, pp. 136–147.

  5. Billon-Bruyat, J.-P., Lécuyer, C., Martineau, F., et al., Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: Implications for the ecology of fish, turtles, and crocodilians, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2005, vol. 216, nos. 3–4, pp. 359–375.

    Article  Google Scholar 

  6. Erdei, B., Hably, L., Kazmer, M., et al., Neogene flora and vegetation development of the pannonian domain in relation to palaeoclimate and palaeogeography, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 253, nos. 1–2, pp. 115–140.

    Article  Google Scholar 

  7. Fisher, J.K., Price, G.D., Hart, M.B., et al., Stable isotope analysis of the Cenomanian–Turonian (Late Cretaceous) oceanic anoxic event in the Crimea, Cretaceous Res., 2005, vol. 26, no. 6, pp. 853–863.

    Article  Google Scholar 

  8. Forster, A., Schouten, S., Moriya, K., et al., Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event (OAE 2): sea surface temperature records from the equatorial Atlantic, Paleoceanography, 2007, vol. 22, A1219.

    Article  Google Scholar 

  9. Gabdullin, R.R., Samarin, E.N., Ivanov, A.V., et al., Lithogeochemical characterization of depositional environments in the Crimean-Caucasian trough during the Early Jurassic–Aalenian (Kacha Uplift and Krasnaya Polyana), Moscow Univ. Geol. Bull., 2014, vol. 69, no. 6, pp. 410–423.

    Article  Google Scholar 

  10. Gabdullin, R.R., Samarin, E.N., Ivanov, A.V., et al., The lithological-geochemical and paleoecological characteristics of sedimentation conditions in the Crimean Mountains in the Maastrichtian, Moscow Univ. Geol. Bull., 2015, vol. 70, no. 6, pp. 113–130.

    Article  Google Scholar 

  11. Huber, B.T., Norris, R.D., and Macleod, K.G., Deep-Sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 2002, vol. 30, no. 2, pp. 123–126.

    Article  Google Scholar 

  12. Iqbal, Sh., Wagreich, M., Irfan, U., et al., Hot-house climate during the Triassic/Jurassic transition: The evidence of climate change from the southern hemisphere (Salt Range, Pakistan), Global Planet. Change, 2019, vol. 172, pp. 15–32.

    Article  Google Scholar 

  13. Ivanov, D., Utescher, T., Mosbrugger, V., et al., Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 304, nos. 3–4, pp. 262–275.

    Article  Google Scholar 

  14. Karpuk, M.S., Upper Barremian–Aptian ostracods of the Crimean Mountains: Stratigraphic significance and paleoecology, Cand. (Geol.-Mineral.) Dissertation, Moscow, 2016.

  15. Kisilev, D.N., The thermal regime dynamics in Callovian–Oxfordian seas of northwestern Eurasia: Implications of relative paleotemperature data, Stratigr. Geol. Correl., 2004, vol. 12, no. 4, pp. 347–366.

    Google Scholar 

  16. Li, C. and Yang, S.Y., Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? Am. J. Sci., 2010, vol. 310, no. 2, pp. 111–127.

    Article  Google Scholar 

  17. McLennan, S.M., Weathering and global denudation, J. Geol., 1993, vol. 101, pp. 295–303.

    Google Scholar 

  18. Merenkova, S.I., Seregina, I.F., Gabdullin, R.R., et al., Reconstruction of the paleosalinity and paleobathymetry of the Yenikale Strait in the Eastern Paratethys in Sarmatian: Evidence from the geochemical data, Moscow Univ. Geol. Bull., 2020, vol. 75, no. 3, pp. 37–46.

    Article  Google Scholar 

  19. Naidin, D.P., Teis, R.V., and Zadorozhnyi, I.K., Some new data on the temperatures of Maastrichtian basins of the Russian Platform and adjacent areas according to the isotopic oxygen composition in belemnite rostra, Geokhimiya, 1964, no. 10, pp. 971–979.

  20. Nesbitt, H.W. and Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, vol. 299, no. 5885, pp. 715–717.

    Article  Google Scholar 

  21. Ogg, J., Ogg, G., and Gradstein, F., A Concise Geologic Time Scale, Elsevier, 2016.

    Google Scholar 

  22. Ovechkina, M.N., Erba, E., and Bottini, C., Calcareous nannoplankton proxies for palaeoenvironmental reconstruction of the Albian–Cenomanian succession in northwestern Israel (Mount Carmel Region), Mar. Micropaleontol., 2019, vol. 152, no. 101742

  23. Quan, C., Liu, Y.-Sh., and Utescher, T., Paleogene temperature gradient, seasonal variation and climate evolution of northeast China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vols. 313–314, pp. 150–161.

    Article  Google Scholar 

  24. Rud’ko, S.V., Kuznetsov, A.B., and Pokrovskii, B.G., Sr chemostratigrphy, δ13C, and δ18O of rocks in the Crimean carbonate platform (Late Jurassic, northern Peri-Tethys), Lithol. Miner. Resour., 2017, vol. 52, no. 6, pp. 479–497.

    Article  Google Scholar 

  25. Scotese, C.R., Song, H., Mills, B.J.W., et al., Phanerozoic paleotemperatures: The Earth’s changing climate during the last 540 million years, Earth Sci. Rev., 2021, vol. 215, no. 103503.

  26. Tesakova, E.M., Reconstruction of paleotemperatures of the Middle Russian Sea in the Middle and Late Jurassic based on ostracods, in Sb. tr. Vseross. nauchn. konf., posvyashch. pamyati prof. V. G. Ocheva “Problemy paleoekologii i istoricheskoi geoekologii” (Proc. All-Russ. Sci. Conf. Devoted to Memory of Prof. V.G. Ochev “Problems of Paleoecology and Historical Geoecology”), Ivanov, A.V., Ed., Saratov, 2014, pp. 133–147.

  27. Uhl, D., Klotz, S., Traiser, C., et al., Cenozoic paleotemperatures and leaf physiognomy—A European perspective, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 248, nos. 1–2, pp. 24–31.

    Article  Google Scholar 

  28. Utescher, T., Bruch, A., Erdei, B., et al., The coexistence approach-theoretical background and practical considerations of using plant fossils for climate quantification, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 410, pp. 58–73.

    Article  Google Scholar 

  29. Vakhrameev, V.A., Climates of the Northern Hemisphere in the Cretaceous Period as evidenced from paleobotanical data, Paleontol. Zh., 1978, no. 2, pp. 3–17.

  30. Yang, J., Cawood, P.A., Du, Y., et al., Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high and low-paleolatitude sedimentary records, Geology, 2014, vol. 42, no. 10, pp. 835–838.

    Article  Google Scholar 

  31. Yasamanov, N.A., New data on temperature conditions in the Early Cretaceous basin of Western Transcaucasia, Izv. Akad. Nauk SSSR, Ser. Geol., 1973, no. 7, pp. 145–148.

  32. Zakharov Yu.D., Kakabadze M.V., Sharikadze M.Z., et al., Preliminary data on the isotope composition of Aptian brachiopods and mollusks of Caucasus, in Melovaya sistema Rossii i blizhnego zarubezh’ya: problemy stratigrafii i paleogeografii (The Cretaceous System of Russia and CIS Countries: Problems of Stratigraphy and Paleogeography), Baraboshkin E.Yu., Ed., Simferopol: Izd. Dom Chernomorpress, 2016, pp. 118–120.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (projects nos. 18-05-00503, 18-05-00495) and, partly, by the Ministry of Science and Higher Education of Russian Federation (project no. 2019-0858), Rational Mineral Management Program of the Activity of the World Research–Educational Center for 2019–2024, Ministry of Science and Higher Education of Russian Federation (order of the Government of Russian Federation no. 537 on April 30, 2019), and Mathematical Methods of Analysis of Complex Systems Interdisciplinary Research–Educational School of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. R. Gabdullin, A. Yu. Puzik, S. I. Merenkova, M. D. Kazurov, L. F. Kopaevich, E. V. Yakovishina, S. I. Bordunov, E. A. Lygina, N. V. Badulina or I. R. Migranov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Melekestseva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabdullin, R.R., Puzik, A.Y., Merenkova, S.I. et al. The Paleoclimate Evolution of Central and Eastern Tethys in the Jurassic–Quaternary. Moscow Univ. Geol. Bull. 76, 522–528 (2021). https://doi.org/10.3103/S0145875221050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875221050094

Keywords:

Navigation