Skip to main content
Log in

Ultrasonic Measurements of Two-Phase Flow

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents development of a complex method of ultrasonic measurement of two-phase flows. The method enables measurement of the dynamic and structural characteristics of ascending inhomogeneity. A software and hardware complex for realization of the proposed method has been developed and implemented and tested in water. Results of experimental studies show that the software and hardware complex enables detection of rising gas bubbles in a liquid medium, monitoring of their dynamics, and localization of them in a volume of 5 to 50 cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

REFERENCES

  1. Meledin, V.G., Informatika optoelektronnykh izmerenii: nauka i innovatsionnye promyshlennye tekhnologii (Informatics of Optoelectronic Measurements: Science and Innovative Industrial Technologies), Novosibirsk: IT SO RAN, 2008.

    Google Scholar 

  2. Anufriev, I.S., Anikin, Y.A., Fil’kov, A.I., Loboda, E.L., Agafontseva, M.V., Kasymov, D.P., Tizilov, A.S., Astanin, A.V., Pesterev, A.V., and Evtushkin, E.V., Investigation into the Structure of a Swirling Flow in a Model of a Vortex Combustion Chamber by Laser Doppler Anemometry, Tech. Phys. Lett., 2013, vol. 39, pp. 30–32; https://doi.org/10.1134/S1063785013010045.

    Article  ADS  Google Scholar 

  3. Butov, A.A., Zhdanov, V.S., Klimonov, I.A., Kudashov, I.G., and Kutlimetov, A.E., Verification of the EUCLID/V2 Code Based on Experiments Involving Destruction of a Liquid Metal Cooled Reactor’s Core Components, Thermal Engin., 2019, vol. 66, no. 5, pp. 302–309.

    Article  ADS  Google Scholar 

  4. Mosunova, N.A., Alipchenkov, V.M., Pribaturin, N.A., Strizhov, V.F., and Usov, E.V., Lead Coolant Modeling in System Thermal-Hydraulic Code HYDRA-IBRAE/LM and Some Validation Results, Nucl. Engin. Des., 2020, vol. 359, p. 110463.

    Article  Google Scholar 

  5. Sergiyenko, O.Yu., Ivanov, M.V., Tyrsa, V.V., Kartashov, V.M., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Rodrı́guez-Quiñonez, J.C., Nieto-Hipólito, J.I., Hernandez, W., and Tchernykh, A., Data Transferring Model Determination in Robotic Group, Robotics Autonom. Syst., 2016, vol. 83, pp. 251–260; DOI:10.1016/j.robot.2016.04.003.

    Article  Google Scholar 

  6. Kremlevskii, P.P., Raskhodomery i schetchiki kolichestva veshchestv: Spravochnik: Kniga 2 (Flow Meters and Quantity Meters: Handbook: Book 2), St.-Petersburg: Politekhnika, 2004.

    Google Scholar 

  7. Anufriev, I.S., Baklanov, A.M., Borovkova, O.V., Vigriyanov, M.S., Leshchevich, V.V., and Sharypov, O.V., Investigation of Soot Nanoparticles during Combustion of Liquid Hydrocarbons with Injection of a Superheated Steam Jet into the Reaction Zone, Combust., Explos., Shock Waves, 2017, vol. 53, pp. 140–148; https://doi.org/10.1134/S0010508217020034.

    Article  Google Scholar 

  8. Sergiyenko, O. and Zhirabok, A., Fault Identification in Mobile Robot Groups Using Sliding Mode Observers, Program. Computer Soft., 2020, vol. 46, no. 8, pp. 679–688.

    Article  MathSciNet  Google Scholar 

  9. Anufriev, I.S., Alekseenko, S.V., Kopyev, E.P., and Sharypov, O.V., Combustion of Substandard Liquid Hydrocarbons in Atmosphere Burners with Steam Gasification, J. Eng. Therm., 2019, vol. 28, pp. 324–31; https://doi.org/10.1134/S1810232819030032.

    Article  Google Scholar 

  10. Zhdanov, V.S., Klimonov, I.A., Lezhnin, S.I., Lobanov, P.D., Pribaturin, N.A., Svetonosov, A.I., and Usov, E.V., Computation-and-Experiment Study of Behavior of Molten Metal in Fuel Element and Fuel Assembly: Preliminary Experiments and Computational Models, J. Eng. Therm., 2020, vol. 29, pp. 209–221.

    Article  Google Scholar 

  11. Mogil’ner, A.I., Morozov, S.A., Zakharov, S.O., and Uralets, A.Yu., Detection of gas bubbles in liquid metal heat carrier by means of magnetic flowmeters, Preprint of Institute of Physics and Power Engineering, Obninsk, 1986.

  12. Kokoreva, I. and Shchelkunov, G., X-ray Non-Destructive Testing, Elektron.: Nauka, Tekhnol., Bizness, 2007, vol. 5, pp. 329–336.

  13. Santhosh, K.V. and Roy, B.K., An Intelligent Flow Measurement Technique Using Ultrasonic Flow Meter with Optimized Neural Network, Int. J. Control Automat., 2012, vol. 5, no. 4, pp. 53–56.

    Google Scholar 

  14. Andruszkiewicz, et al., Ultrasonic Measurements of Flow in Two-Phase Liquid Gas Systems. Parts I–III, Chemical and Process Engineering, 2008.

  15. Ermolov, I.N. and Ermolov, M.I., Ul’trazvukovoi kontrol’ (Ultrasonic Testing), 5th ed., Moscow: 2006.

  16. Andruszkiewicz, A., Eckert, K., Eckert, S., and Odenbach, S., Gas Bubble Detection in Liquid Metals by Means of the Ultrasound Transit-Time-Technique, Eur. Phys. J. Spec. Top., 2013, vol. 220, no. 1, pp. 53–62.

    Article  ADS  Google Scholar 

  17. Richter, T., Eckert, K., Yang, X., and Odenbach, S., Measuring the Diameter of Rising Gas Bubbles by Means of the Ultrasound Transit Time Technique, Nucl. Engin. Des., 2015, vol. 291, pp. 64–70.

    Article  Google Scholar 

  18. Vogt, T., Andruszkiewicz, A., Eckert, K., Odenbach, S., Eckert, S., and Gerbeth, G., Ultrasonic Flow Measurements and Bubble Detection in Gas-Stirred Metallic Melts, Proc. 8th Int. Symp. on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, 2012, pp. 23–26.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kabardin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelnik, A.S., Dvoinishnikov, S.V., Meledin, V.G. et al. Ultrasonic Measurements of Two-Phase Flow. J. Engin. Thermophys. 30, 679–692 (2021). https://doi.org/10.1134/S1810232821040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040111

Navigation