Skip to main content
Log in

Heat Flux Sensors of Absorbed Radiation for Orbital Spacecraft. Design and Testing

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper is devoted to the design and testing of radiative heat flux sensors (RHFSs) for various applications in spacecraft. The paper presents the results of experimental and computational studies using a prototype of attitude determination system, which implements the proposed methods for determination of absorbed radiation heat fluxes for orbital spacecraft. An analysis of different RHFS designs is carried out. The physical model of the process in the experimental system is presented. The requirements for RHFS prototypes, as well as the conditions and parameters of the tests, are formulated. The purpose of the tests is to study the thermal conditions of the RHFS prototypes and to select a sensor that meets the requirements to a certain RHFS. The tests evaluated the dependences of the heat fluxes absorbed by the sensors on the angle of irradiation and the effect of the angular velocity on the determination of radiation. The results of preliminary approbation of the developed approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

REFERENCES

  1. Izluchatel’nye svoistva tverdykh materialov (Radiative Properties of Solid Materials), Sheindlin, A.E., Ed., Moscow: Energiya, 1974.

    Google Scholar 

  2. Sokolov, A.V., Opticheskie svoistva metallov (Optical Properties of Metals), Moscow: Fizmatgiz, 1961.

    Google Scholar 

  3. Gryvnak, D.A. and Burch, D.E., Optical and Infrared Properties of Al2O3 at Elevated Temperatures, J. Opt. Soc. Am., 1965, vol. 55, no. 6, pp. 625–629.

    Article  ADS  Google Scholar 

  4. Kolesnikov, A.V. and Serbin, V.I., Modelirovanie uslovii vneshnego teploobmena kosmicheskikh apparatov (Modeling of Conditions of External Heat Exchange of Space Vehicles), Moscow: Informatsiya–XXI vek, 1997.

    Google Scholar 

  5. Model’ kosmosa (Model of Space), vol. 1, Panasyuk, M.I. and Novikova, L.S., Eds., Moscow: KDU, 2007.

    Google Scholar 

  6. Model’ kosmosa (Model of Space), vol. 2, Panasyuk, M.I. and Novikova, L.S., Eds., Moscow: KDU, 2007.

    Google Scholar 

  7. Kozlov, L.V., Nusinov, M.D., and Akishin, A.I., Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy (Modeling of Thermal Regimes of Spacecraft and Its Environment), Moscow: Mashinostroenie, 1971.

    Google Scholar 

  8. Gerashchenko, O.A. Osnovy teplometrii (Basics of Heat Measurement), Kiev: Naukova Dumka, 1970.

    Google Scholar 

  9. Dovgyalo, D.A., Tipovye komponenty i datchiki kontrol’no-diagnosticheskikh sredstv (Regular Components and Sensors of Control and Diagnostic Tools), Novopolotsk: PGU, 2004.

    Google Scholar 

  10. Gülhan, A., Heat Flux Measurements in High Enthalpy Flows, in RTO EN-8, 1999.

  11. Sumin, M., Heat Flux Measurement inside Internal Combustion Engine with Gradient Heat Flux Sensor, Lappeenranta University of Technology. Faculty of Technology, 2013.

  12. Altov, V.V., Gulya, V.M., Kopyatkevich, R.M., Mishin, G.S., Goncharov, K.A., Kochetkov, A.U., Tulin, D.V., and Shabarchin, A.F., Thermal Design and Fragmentary Ground Testing of the System for Ensuring the Thermal Regime of a Non-Hermetic Spacecraft Based on Honeycomb Panels with Heat Pipes, Kosmonavtika Raketost., 2010, no. 3, pp. 33–41.

  13. Markov, M.N., Priemniki infrakrasnogo izlucheniya (Infrared Radiation Receivers), Moscow: Nauka, 1968.

    Google Scholar 

  14. Alifanov, O.M., Obratnye zadachi teploobmena (Inverse Problems of Heat Transfer), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  15. Total Heat Flow Sensor FOA 020, FOA 036; http://www.teploizmerenie.ru/print/3768.htm (date of access: 13.12.2017).

  16. CAPTEC Entreprise; https://www.captec.fr (date of access: 13.12.2017).

  17. Heat Flow Sensors of the Chemist-Design Company; http://teplomer.msk.ru (date of access: 04.06.2018).

  18. FluxTeq; https://www.fluxteq.com (date of access: 13.12.2017).

  19. Semena, N.P., Determination of Spacecraft Orientation by the Temperature Field Analysis of Its Outer Surface, Thermal Phys. Aeromech., 2009, vol. 16, no. 1, pp. 129–140.

    Article  ADS  Google Scholar 

  20. Semena, N.P., Use of Space Thermal Factors by Spacecraft, in Advances in Spacecraft Technologies, Hall, J., Ed., INTECH, 2011, pp. 157–174.

  21. Thermoregulatory coatings of the Composite company; http://www.kompozit-mv.ru/index.php/ru/ nemetallicheskie-materialy/lakokrasochnye-termoreguliruyushchie-pokrytiya (date of access: 21.05.2018).

  22. Alifanov, O.M., Budnik, S.A., Klimenko, B.M., Samarin, V.V., and Yarotskiy, V.N., Device for the Manufacture of Microthermocouples, RF patent 2660325, 2018.

  23. Zinoviev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  24. Reaktsionno-svyazannyi nitrid kreminiya OTM-931: Pasport no. 268 (Reaction-Bound Silicon Nitride OTM-931: Passport no. 268), ONPP “Tekhhnologiya,” 2014.

  25. Anuchin, S.A., Lanin, A.V., Prosuntsov, P.V., et al., Influence of the Surface Thermocouple Embedding Method on the Temperature Determination Error during Testing of Ceramic Materials on Radiation Heating Installations, Inzh-Fiz. Zh., 2018, vol. 91, no. 3, pp. 628–636.

    Google Scholar 

  26. Ceramic emitters “ELEMAG-TPK”; http://elemag-tpk.ru (date of access: 05.06.2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nenarokomov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nenarokomov, A.V., Budnik, S.A., Nadiradze, A.B. et al. Heat Flux Sensors of Absorbed Radiation for Orbital Spacecraft. Design and Testing. J. Engin. Thermophys. 30, 615–635 (2021). https://doi.org/10.1134/S1810232821040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040056

Navigation