Skip to main content
Log in

Formation of Multiple Vortices in a Confined Two-Fluid Swirling Flow

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This numerical study explains the formation of multiple circulation cells in a confined swirling two-fluid flow. Providing fine and nonintrusive mixing of ingredients, multiple vortices are beneficial for the growth of tissue culture in aerial bioreactors. A convenient model of bioreactor is a sealed vertical cylindrical container filled with air and liquid. Rotation of the bottom disk drives the circulation of both fluids. Our study reveals that as the rotation intensifies, at least ten circulation cells develop: six in the lower fluid and four in the upper fluid. This steady axisymmetric multi-cell flow exists in some range of the rotation speed. There arises shear-layer instability as the rotation speed significantly exceeds this range. Therefore, such multi-cell flow might have applications in bioreactors where the rotation speed must be moderate for avoidance of destruction of tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Shtern, V., Cellular Flows, New York: Cambridge Univ. Press, 2018.

    Book  Google Scholar 

  2. Vogel, H.U., Experimentelle Ergebnisse über die laminare Strömung in einem Zylindrischen Gehäuse mit darin rotierender Scheibe 6 Max-Planck-Institut für Strömungsforschung, 1968.

  3. Escudier, M.P., Observation of the Flow Produced in a Cylindrical Container by a Rotating Endwall, 1984, Exp. Fluids, vol. 2, pp. 189–196.

    Article  ADS  Google Scholar 

  4. Liow, K.Y.S., Tan, B.T., Thouas, G., and Thompson, M.C., CFD Modeling of the Steady-State Momentum and Oxygen Transport in a Bioreactor That Is Driven by a Rotating Disk, Mod. Phys. Lett. B, 2009, vol. 23, pp. 121–127.

    Article  ADS  Google Scholar 

  5. Carrión, L., Herrada, M.A., Shtern, V.N., and López-Herrera, J.M., Patterns and Stability of a Whirlpool Flow, Fluid Dyn. Res., 2017, vol. 49, p. 025519.

    Article  ADS  MathSciNet  Google Scholar 

  6. Yang, W., Delbender, I., Fraigneau, Y., and Witkowski, L.M., Large Axisymmetric Surface Deformation and Dewetting in the Flow above a Rotating Disk in a Cylindrical Tank: Spin-up and Permanent Regimes, 2020, Phys. Rev. Fluids, vol. 5, p. 044801.

    Article  ADS  Google Scholar 

  7. Brøns, M., Voigt, L.K., and Sørensen, J.N., Topology of Vortex Breakdown Bubbles in a Cylinder with a Rotating Bottom and a Free Surface, J. Fluid Mech., 2001, vol. 428, pp. 133–148.

    Article  ADS  MathSciNet  Google Scholar 

  8. Herrada, M.A. and Montanero, J.M., A Numerical Method to Study the Dynamics of Capillary Fluid Systems, 2016, J. Comput. Phys., vol. 306, pp. 137–147.

    Article  ADS  MathSciNet  Google Scholar 

  9. Kármán, T., Über Laminare und Turbulent Reibung, 1921, Z. Angew. Math. Mech., vol. 1, pp. 233–252.

    Article  Google Scholar 

  10. Bödewadt, U.T., Die Drehströmung über festem Grund, 1940, Z. Angew. Math. Mech., vol. 20, pp. 241–253.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shtern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrión, L., Herrada, M.A. & Shtern, V. Formation of Multiple Vortices in a Confined Two-Fluid Swirling Flow. J. Engin. Thermophys. 30, 636–645 (2021). https://doi.org/10.1134/S1810232821040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040068

Navigation