Skip to main content
Log in

Synthesis of Plane Waveguide Arrays Taking into Account Mutual Coupling of Radiators

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The variational approach is used for solving the synthesis problem of plane rectangular array with waveguide excitation of its elements. The proposed functional includes three components that allow us to minimize the mean square deviation of the given and synthesized amplitude radiation patterns (RP), the value of the field amplitude in the given near zone regions, and the norm of excitation coefficients of the array elements. The mutual coupling of separate array radiators is taken into account solving the corresponding electrodynamic problem. The Hallen’s integral equation is used to determinate the current distribution in the array radiators. The optimal excitation coefficients of the radiators are determined minimizing the proposed functional, it is reduced to solving the nonlinear Euler integral equations system, since the amplitude radiation characteristics are the input data of the problem. The resulting system of nonlinear integral equations is solved efficiently by the method of successive approximations; the relaxation is its characteristic feature. The calculation results show that the developed approach can be used for arrays with different configurations, in particular with hexagonal placement of radiators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. L. D. Bakhrakh, S. D. Kremenetsky, Synthesis of Radiating Systems (Theory and Calculation Methods) (Sov. Radio, Moscow, 1974).

    Google Scholar 

  2. E. G. Zelkin, V. G. Sokolov, Methods of Antenna Synthesis. Phased Antenna Arrays and Antennas with Plane Aperture (Sov. Radio, Moscow, 1980).

    Google Scholar 

  3. Y. Dou, K.-L. Wu, "Nature of antenna radiation revealed by physical circuit model," IEEE Trans. Antennas Propag., v.69, n.1, p.84 (2021). DOI: https://doi.org/10.1109/TAP.2020.3008676.

    Article  Google Scholar 

  4. B. Zhang, Y. Rahmat-Samii, "Robust optimization with worst case sensitivity analysis applied to array synthesis and antenna designs," IEEE Trans. Antennas Propag., v.66, n.1, p.160 (2018). DOI: https://doi.org/10.1109/TAP.2017.2772312.

    Article  Google Scholar 

  5. G. Bogdan, K. Godziszewski, Y. Yashchyshyn, C. H. Kim, S.-B. Hyun, "Time-modulated antenna array for real-time adaptation in wideband wireless systems—Part I: design and characterization," IEEE Trans. Antennas Propag., v.68, n.10, p.6964 (2020). DOI: https://doi.org/10.1109/TAP.2019.2902755.

    Article  Google Scholar 

  6. W. P. M. N. Keizer, "Synthesis of monopulse antenna patterns for elliptical phased array antennas with different peak sidelobes along the principal planes," IEEE Trans. Antennas Propag., v.67, n.9, p.5943 (2019). DOI: https://doi.org/10.1109/TAP.2019.2916644.

    Article  Google Scholar 

  7. F. F. Dubrovka, S. I. Piltyay, "Ultrawideband microwave biconical high-gain antenna for dual-band systems of omnidirectional radio monitoring," Radioelectron. Commun. Syst., v.63, n.12, p.619 (2020). DOI: https://doi.org/10.3103/S0735272720120018.

    Article  Google Scholar 

  8. V. P. Riabukha, A. V. Semeniaka, Y. A. Katiushyn, "Mathematical models of cross-correlated and uncorrelated Gaussian noise jamming from external sources," Radioelectron. Commun. Syst., v.64, n.3, p.147 (2021). DOI: https://doi.org/10.3103/S0735272721030043.

    Article  Google Scholar 

  9. R. J. Mailloux, Phased Array Antenna Handbook, Third Edition (Artech House, 2017).

    Google Scholar 

  10. J. S. Herd, M. D. Conway, "The evolution to modern phased array architectures," Proc. IEEE, v.104, n.3, p.519 (2016). DOI: https://doi.org/10.1109/JPROC.2015.2494879.

    Article  Google Scholar 

  11. F. S. Akbar, L. P. Ligthart, G. Hendrantoro, I. E. Lager, "Use of subarrays in linear array for improving wide angular scanning performance," IEEE Access, v.7, p.135290 (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2941398.

    Article  Google Scholar 

  12. A. Naqvi, S. Lim, "Review of recent phased arrays for millimeter-wave wireless сommunication," Sensors, v.18, n.10, p.3194 (2018). DOI: https://doi.org/10.3390/s18103194.

    Article  Google Scholar 

  13. J. W. Zang, A. Alvarez-Melcon, J. S. Gomez-Diaz, "Nonreciprocal phased-array antennas," Phys. Rev. Appl., v.12, n.5, p.054008 (2019). DOI: https://doi.org/10.1103/PhysRevApplied.12.054008.

    Article  Google Scholar 

  14. R. E. Collin, F. J. Zucker, Antenna Theory. Part 1 (McGraw-Hill, New York, 1969).

    Google Scholar 

  15. А. Pandey, Practical Microstrip and Printed Antenna Design (Artech House, Boston, 2019). URI: https://us.artechhouse.com/Practical-Microstrip-and-Printed-Antenna-Design-P2002.aspx.

    Google Scholar 

  16. F. Zhang, W. Fan, J. Zhang, G. F. Pedersen, "Virtual large-scale array beamforming analysis using measured subarray antenna patterns," IEEE Access, v.5, p.19812 (2017). DOI: https://doi.org/10.1109/ACCESS.2017.2737655.

    Article  Google Scholar 

  17. G. S. Cheng, C.-F. Wang, "A novel periodic characteristic mode analysis method for large-scale finite arrays," IEEE Trans. Antennas Propag., v.67, n.12, p.7637 (2019). DOI: https://doi.org/10.1109/TAP.2019.2934781.

    Article  Google Scholar 

  18. M. I. Andriychuk, N. N. Voitovich, P. O. Savenko, V. P. Tkachuk, Antenna Synthesis Based on the Amplitude Radiation Pattern. Numerical Methods and Algorithms (Naukova Dumka, Kyiv, 1993).

    Google Scholar 

  19. J. H. Kim, S. W. Choi, "A deep learning-based approach for radiation pattern synthesis of an array antenna," IEEE Access, v.8, p.226059 (2020). DOI: https://doi.org/10.1109/ACCESS.2020.3045464.

    Article  Google Scholar 

  20. N. V. Anyutin, K. I. Kurbatov, I. M. Malay, M. A. Ozerov, "Algorithm for transforming antenna electromagnetic near-field measured on spherical surface into far-field based on direct calculation of Stratton and Chu formulas," Radioelectron. Commun. Syst., v.62, n.3, p.109 (2019). DOI: https://doi.org/10.3103/S0735272719030026.

    Article  Google Scholar 

  21. Y. N. Feld, Antennas of a Centimeter Range (Sov. Radio, Moscow, 1950).

    Google Scholar 

  22. M. I. Andriychuk, "Investigation of solution of the nonlinear synthesis problem for the waveguide array," in Proceedings of 5th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (IEEE Cat. No.00TH8508) (IEEE, Washington, 2000). DOI: https://doi.org/10.1109/DIPED.2000.890000.

    Chapter  Google Scholar 

  23. P. O. Savenko, "Method of implicit functions in the solution of multiparameter nonlinear spectral problems," Math. Methods Physicomechanical Fields, v.63, n.2, p.36 (2020).

    Google Scholar 

  24. A. S. Vander Vorst, A. A. Laloux, R. J. M. Govaerts, "A computer optimization of the Rayleigh-Ritz method," IEEE Trans. Microw. Theory Tech., v.17, n.8, p.454 (1969). DOI: https://doi.org/10.1109/TMTT.1969.1126996.

    Article  Google Scholar 

  25. A. G. Ramm, "A collocation method for solving integral equations," Int. J. Comput. Sci. Math., v.2, n.3, p.222 (2009). DOI: https://doi.org/10.1504/IJCSM.2009.027874.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Savenko, "Computational methods in the theory of synthesis of radio and acoustic radiating systems," Appl. Math., v.04, n.03, p.523 (2013). DOI: https://doi.org/10.4236/am.2013.43078.

    Article  Google Scholar 

  27. C. A. Valagiannopoulos, A. Alu, "The role of reactive energy in the radiation by a dipole antenna," IEEE Trans. Antennas Propag., v.63, n.8, p.3736 (2015). DOI: https://doi.org/10.1109/TAP.2015.2436410.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. I. Andriychuk, O. O. Bulatsyk, N. N. Voitovich, "Comparing different approaches to linear antenna synthesis problems according to power radiation pattern," in 2014 XIXth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED) (IEEE, Washington, 2014). DOI: https://doi.org/10.1109/DIPED.2014.6958307.

    Chapter  Google Scholar 

  29. M. I. Andriychuk, N. N. Voytovich, "Synthesis of a closed planar antenna with a given amplitude pattern," Sov. J. Commun. Technol. & Electron. (English Transl. Radiotekhnika i Elektron., v.30, n.5, p.35 (1985).

    Google Scholar 

  30. M. I. Andriychuk, V. F. Kravchenko, P. A. Savenko, M. D. Tkach, "Synthesis of plane radiating systems according to the prescribed power radiation pattern," Phys. Bases Instrum., v.2, n.3, p.40 (2013). DOI: https://doi.org/10.25210/jfop-1303-040055.

    Article  Google Scholar 

  31. M. M. Vainberg, V. A. Trenogin, Theory of Branching of Nonlinear Equations Solutions (Nauka, Moscow, 1969).

    MATH  Google Scholar 

  32. M. Khalaj-Amirhosseini, G. Vecchi, P. Pirinoli, "Near-Chebyshev pattern for nonuniformly spaced arrays using zeros matching method," IEEE Trans. Antennas Propag., v.65, n.10, p.5155 (2017). DOI: https://doi.org/10.1109/TAP.2017.2737041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhaylo I. Andriychuk.

Ethics declarations

ADDITIONAL INFORMATION

M. I. Andriychuk and M. R. Melnyk

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021090028 with DOI: https://doi.org/10.20535/S0021347021090028

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 9, pp. 538-549, September, 2021 https://doi.org/10.20535/S0021347021090028 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriychuk, M.I., Melnyk, M.N. Synthesis of Plane Waveguide Arrays Taking into Account Mutual Coupling of Radiators. Radioelectron.Commun.Syst. 64, 471–481 (2021). https://doi.org/10.3103/S0735272721090028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721090028

Navigation