Skip to main content

Advertisement

Log in

Review on methods used for wildlife species and individual identification

  • Review
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

This work presented a literature review on animal species and individual identification tools, as well as animal monitoring capabilities. We gathered the literature to cover different aspects of technologies that are widely in use for animal identification, from the traditional up to the latest methods. This study includes species and individual animal identification attributes namely body patterns, footprints, facial features, and sound for identification purposes. The large volume of data collected could be automatically processed using machine learning and deep learning techniques to achieve both species and individual animal identification more efficiently as compared to the human workforce. It is a much faster and accurate approach considering the large volume of data, than manual processing, which is extremely expensive, time-consuming, tedious, and monotonous. We established that machine learning and advancements in deep learning hold significant promise to high-accuracy identification of both species and individual animal. Methods used for individual identification are mainly implemented in endangered species by the conservation management. The traditional methods such as the use of footprints, drawings of animal biometrics are integrated into the recent growth of technology to eliminate the human skill needed to achieve species and individual identification through the use of machine learning and deep learning algorithms for automatic identification purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aide TM, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G, Alvarez R (2013) Real-time bioacoustics monitoring and automated species identification. PeerJ 1:e103

  • Alibhai S, Jewell Z, Evans J (2017) The challenge of monitoring elusive large carnivores: An accurate and cost-effective tool to identify and sex pumas (puma concolor) from footprints. PloS One 12(3):e0172065

  • Alibhai SK, Jewell ZC, Law PR (2008) A footprint technique to identify white rhino ceratotherium simum at individual and species levels. Endanger Species Res 4(1–2):205–218

    Google Scholar 

  • Alli MN, Viriri S (2013) Animal identification based on footprint recognition. In: 2013 International Conference on Adaptive Science and Technology. IEEE, pp 1–4

  • Alonso RS, McClintock BT, Lyren LM, Boydston EE, Crooks KR (2015) Mark-recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study. PloS one 10(3):e0123032

    PubMed  PubMed Central  Google Scholar 

  • Anderson F, Hitchins P (1971) A radio tracking system for the black rhinoceros. S Afr J Wildl Res-24-month delayed open access 1(1):26–36

  • Andrew W, Greatwood C, Burghardt T (2019) Aerial animal biometrics: Individual friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference. arXiv preprint arXiv:190705310

  • AsRSG I (2009) The greater one horned rhinoceros monitoring instructors training manual. International Union for Nature Conservation and Asian Rhino Specialist Group. p 108

  • Banga C, Besbes B, Balvay B, Chazo L, Jamaa O, Rozstalnyy A, Rovere G, Toto A, Trivedi K et al (2010) Current situation of animal identification and recording systems in developing countries and countries with economies in transition. Farm animal breeding, identification, production recording and management Proceedings of the 37th ICAR Biennial Session. pp 53–59

  • Bedetti A, Greyling C, Paul B, Blondeau J, Clark A, Malin H, Horne J, Makukule R, Wilmot J, Eggeling T et al (2020) System for elephant ear-pattern knowledge (SEEK) to identify individual African elephants. Pachyderm 61:63–77

    Google Scholar 

  • Blake EH (2002) Extended abstract a field computer for animal trackers. In: CHI’02 extended abstracts on Human factors in computing systems. pp 532–533

  • Bondi E, Fang F, Hamilton M, Kar D, Dmello D, Choi J, Hannaford R, Iyer A, Joppa L, Tambe M et al (2018) SPOT poachers in action: Augmenting conservation drones with automatic detection in near real-time. In: Thirty-Second AAAI Conference on Artificial Intelligence

  • Borowicz A, Le H, Humphries G, Nehls G, Höschle C, Kosarev V, Lynch HJ (2019) Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PloS one 14(10):e0212532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bothma JdP, Le Riche E (1993) Disturbance bias when tracking kalahari leopards panthera pardus by spoor. Koedoe 36(2):109–112

    Google Scholar 

  • Brust CA, Burghardt T, Groenenberg M, Kading C, Kuhl HS, Manguette ML, Denzler J (2017) Towards automated visual monitoring of individual gorillas in the wild. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp 2820–2830

  • Bugge CE, Burkhardt J, Dugstad KS, Enger TB, Kasprzycka M, Kleinauskas A, Myhre M, Scheffler K, Ström S, Vetlesen S (2011) Biometric methods of animal identification. Course notes, Laboratory Animal Science at the Norwegian School of Veterinary Science. pp 1–6

  • Burghardt T, Ćalić J (2006) Analysing animal behaviour in wildlife videos using face detection and tracking. IEE Proceedings-Vision, Image and Signal Processing 153(3):305–312

    Google Scholar 

  • Burt P, Bergen J, Hingorani R, Kolczynski R, Lee W, Leung A, Lubin J, Shvayster H (1989) Object tracking with a moving camera. [1989] Proceedings. Workshop on Visual Motion. IEEE, pp 2–12

  • Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges

  • Cakir E, Adavanne S, Parascandolo G, Drossos K, Virtanen T (2017) Convolutional recurrent neural networks for bird audio detection. In: 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, pp 1744–1748

  • Carl C, Schönfeld F, Profft I, Klamm A, Landgraf D (2020) Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model. Eur J Wildl Res 66(4):1–7

    Google Scholar 

  • Chauhan NK, Singh K (2018) A review on conventional machine learning vs deep learning. 2018 International Conference on Computing, Power and Communication Technologies (GUCON). IEEE, pp 347–352

  • Chen J, Li K, Tang Z, Bilal K, Yu S, Weng C, Li K (2016) A parallel random forest algorithm for big data in a spark cloud computing environment. IEEE Trans Parallel Distrib Syst 28(4):919–933

    Google Scholar 

  • Chen P, Swarup P, Matkowski WM, Kong AWK, Han S, Zhang Z, Rong H (2020) A study on giant panda recognition based on images of a large proportion of captive pandas. Ecol Evol 10(7):3561–3573

    PubMed  PubMed Central  Google Scholar 

  • Cheteni P (2014) An analysis of anti-poaching techniques in Africa: a case of rhino poaching. Environ Econ (5, Iss. 3):63–70

  • Christiansen P, Steen K, Jørgensen R, Karstoft H (2014) Automated detection and recognition of wildlife using thermal cameras. Sensors 14(8):13778–13793

    PubMed  PubMed Central  Google Scholar 

  • Clemins PJ, Johnson MT, Leong KM, Savage A (2005) Automatic classification and speaker identification of African elephant (Loxodonta africana) vocalizations. J Acoust Soc Am 117(2):956–963

    PubMed  Google Scholar 

  • Connally RL, Frank MG, Briers GE, Silvy NJ, Carlisle KM, Tomeček JM (2021) Hunter motivations and use of wild pigs in Texas, USA. Human-Wildlife Interactions 15(1):10

    Google Scholar 

  • Corkery G, Gonzales-Barron UA, Butler F, Mc Donnell K, Ward S (2007) A preliminary investigation on face recognition as a biometric identifier of sheep. Transactions of the ASABE 50(1):313–320

    Google Scholar 

  • Crouse D, Jacobs RL, Richardson Z, Klum S, Jain A, Baden AL, Tecot SR (2017) Lemurfaceid: a face recognition system to facilitate individual identification of lemurs. BMC Zoology 2(1):1–14

    Google Scholar 

  • Cubaynes HC (2020) Whales from space: Assessing the feasibility of using satellite imagery to monitor whales. PhD thesis, University of Cambridge

  • Cubaynes HC, Fretwell PT, Bamford C, Gerrish L, Jackson JA (2019) Whales from space: four mysticete species described using new vhr satellite imagery. Mar Mamm Sci 35(2):466–491

    Google Scholar 

  • Delplanque A, Foucher S, Lejeune P, Linchant J, Théau J (2021) Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks. Remote Sensing in Ecology and Conservation

  • DeMotts R, Hoon P (2012) Whose elephants? Conserving, compensating, and competing in northern Botswana. Soc Nat Resour 25(9):837–851

    Google Scholar 

  • Dixon DR (2003) A non-invasive technique for identifying individual badgers meles meles. Mammal Rev 33(1):92–94

    Google Scholar 

  • Dorning J, Harris S (2019) The challenges of recognising individuals with few distinguishing features: Identifying red foxes Vulpes vulpes from camera-trap photos. PLoS One 14(5):e0216531

    PubMed  PubMed Central  Google Scholar 

  • Dos Santos GAM, Barnes Z, Lo E, Ritoper B, Nishizaki L, Tejeda X, Ke A, Lin H, Schurgers C, Lin A et al (2014) Small unmanned aerial vehicle system for wildlife radio collar tracking. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, pp 761–766

  • Dunham K (2001) Reintroduction of black rhino in the Luangwa Valley, Zambia. Evaluation of areas for the reintroduction of rhinos in Zambia SADC Regional Programme for Rhino Conservation

  • Duporge I, Isupova O, Reece S, Macdonald DW, Wang T (2020) Using very-high-resolution satellite imagery and deep learning to detect and count african elephants in heterogeneous landscapes. Remote Sensing in Ecology and Conservation

  • Eikelboom JA, Wind J, van de Ven E, Kenana LM, Schroder B, de Knegt HJ, van Langevelde F, Prins HH (2019) Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol Evol 10(11):1875–1887

    Google Scholar 

  • Elbroch M, Mwampamba TH, Santos MJ, Zylberberg M, Liebenberg L, Minye J, Mosser C, Reddy E (2011) The value, limitations, and challenges of employing local experts in conservation research. Conserv Biol 25(6):1195–1202

    PubMed  Google Scholar 

  • Ezat MA, Fritsch CJ, Downs CT (2018) Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: a case study at Lake Nyamithi, Ndumo game reserve, South Africa. Biol Conserv 223:76–81

    Google Scholar 

  • Fang Y, Du S, Abdoola R, Djouani K, Richards C (2016) Motion based animal detection in aerial videos. Procedia Comput Sci 92:13–17

    Google Scholar 

  • Ferreira AC, Silva LR, Renna F, Brandl HB, Renoult JP, Farine DR, Covas R, Doutrelant C (2020) Deep learning-based methods for individual recognition in small birds. Methods Ecol Evol 11(9):1072–1085

    Google Scholar 

  • Freytag A, Rodner E, Simon M, Loos A, Kühl HS, Denzler J (2016) Chimpanzee faces in the wild: Log-euclidean CNNs for predicting identities and attributes of primates. In: German Conference on Pattern Recognition. Springer, pp 51–63

  • Frommolt KH, Bardeli R, Clausen M (2008) Computational bioacoustics for assessing biodiversity. In: Proceedings of the International Expert meeting on IT-based detection of bioacoustical patterns, BfN-Skripten, Citeseer, vol 234

  • Gaston KJ, O’Neill MA (2004) Automated species identification: why not? Philos Trans R Soc Lond Ser B Biol Sci 359(1444):655–667

    Google Scholar 

  • Gibbon GE, Bindemann M, Roberts DL (2015) Factors affecting the identification of individual mountain Bongo antelope. PeerJ 3:e1303

  • Goldsworthy C, Matam BR (2021) Improved rare species identification using focal loss based deep learning models. International Journal of Computer and Information Engineering 15(1):18–22

    Google Scholar 

  • Goodyer J (2013) Drone rangers [Africa special sustainability]. Eng Technol 8(5):60–61

    Google Scholar 

  • Greene K, Bell D, Kioko J, Kiffner C (2017) Performance of ground-based and aerial survey methods for monitoring wildlife assemblages in a conservation area of northern Tanzania. Eur J Wildl Res 63(5):77

    Google Scholar 

  • Grünewälder S, Broekhuis F, Macdonald DW, Wilson AM, McNutt JW, Shawe-Taylor J, Hailes S (2012) Movement activity based classification of animal behaviour with an application to data from cheetah (Acinonyx jubatus). PloS One 7(11):e49120

  • Gu J, Alibhai SK, Jewell ZC, Jiang G, Ma J (2014) Sex determination of Amur tigers (Panthera Tigris Altaica) from footprints in snow. Wildl Soc Bull 38(3):495–502

    Google Scholar 

  • Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377

    Google Scholar 

  • Gubili C, Johnson R, Gennari E, Oosthuizen WH, Kotze D, Meÿer M, Sims DW, Jones CS, Noble LR (2009) Concordance of genetic and fin photo identification in the great white shark, Carcharodon carcharias, off Mossel Bay, South Africa. Marine Biology 156(10):2199–2207

    Google Scholar 

  • Guirado E, Tabik S, Rivas ML, Alcaraz-Segura D, Herrera F (2018) Automatic whale counting in satellite images with deep learning. BioRxiv p 443671

  • Guirado E, Tabik S, Rivas ML, Alcaraz-Segura D, Herrera F (2019) Whale counting in satellite and aerial images with deep learning. Sci Rep 9(1):1–12

    CAS  Google Scholar 

  • Guo S, Xu P, Miao Q, Shao G, Chapman CA, Chen X, He G, Fang D, Zhang H, Sun Y, et al. (2020) Automatic identification of individual primates with deep learning techniques. Iscience 23(8):101412

    PubMed  PubMed Central  Google Scholar 

  • Guo X, Shao Q, Li Y, Wang Y, Wang D, Liu J, Fan J, Yang F (2018) Application of UAV remote sensing for a population census of large wild herbivores–taking the headwater region of the yellow river as an example. Remote Sens 10(7):1041

    Google Scholar 

  • Hall-Martin A (1986) Recruitment in a small black rhino population. Pachyderm 7:6–8

    Google Scholar 

  • Hansen MF, Smith ML, Smith LN, Salter MG, Baxter EM, Farish M, Grieve B (2018) Towards on-farm pig face recognition using convolutional neural networks. Comput Ind 98:145–152

    Google Scholar 

  • Hewes GW (1994) Evolution of human semiosis and the reading of animal tracks. In: Origins of Semiosis Sign Evolution in Nature and Culture pp 139–149

  • Hong SJ, Han Y, Kim SY, Lee AY, Kim G (2019) Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery. Sensors 19(7):1651

    PubMed Central  Google Scholar 

  • Höschle C, Cubaynes HC, Clarke PJ, Humphries G, Borowicz A (2021) The potential of satellite imagery for surveying whales. Sensors 21(3):963

    PubMed  PubMed Central  Google Scholar 

  • Hou J, He Y, Yang H, Connor T, Gao J, Wang Y, Zeng Y, Zhang J, Huang J, Zheng B et al (2020) Identification of animal individuals using deep learning: A case study of giant panda. Biol Conserv 242:108414

  • Hu X, Tang Y, Zhang Z (2008) Video object matching based on SIFT algorithm. In: 2008 International Conference on Neural Networks and Signal Processing. IEEE, pp 412–415

  • Huang R, Pedoeem J, Chen C (2018) Yolo-lite: a real-time object detection algorithm optimized for non-GPU computers. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE, pp 2503–2510

  • Huijser MP, McGowen PT (2003) Overview of animal detection and animal warning systems in North America and Europe

  • Hussek A, Hackländer K, Graf C (2020) Are ear notches an effective tool for monitoring individual rhino? Pachyderm (60):55–66

    Google Scholar 

  • Jennings N, Parsons S, Pocock M (2008) Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks. Can J Zool 86(5):371–377

  • Jewell Z, Alibhai S (2013) Identifying endangered species from footprints. International Society for Optics and Photonics (SPIE) Newsroom 2013:1–3

  • Jewell ZC, Alibhai SK, Law PR (2001) Censusing and monitoring black rhino (Diceros Bicornis) using an objective spoor (footprint) identification technique. J Zool 254(1):1–16

    Google Scholar 

  • Jewell ZC, Alibhai SK, Weise F, Munro S, Van Vuuren M, Van Vuuren R (2016) Spotting cheetahs: identifying individuals by their footprints. JoVE (Journal of Visualized Experiments) 111:e54034

  • Johansson Ö, Samelius G, Wikberg E, Chapron G, Mishra C, Low M (2020) Identification errors in camera-trap studies result in systematic population overestimation. Sci Rep 10(1):1–10

    Google Scholar 

  • Kamminga J, Ayele E, Meratnia N, Havinga P (2018) Poaching detection technologies—a survey. Sensors 18(5):1474

    PubMed Central  Google Scholar 

  • Karlsson Schmidt C (2015) Rhino and human detection in overlapping RGB and LWIR images

  • Kellenberger B, Volpi M, Tuia D (2017) Fast animal detection in UAV images using convolutional neural networks. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 866–869

  • Koschan A, Li S, Visich JK, Khumawala BM, Zhang C (2006) Radio frequency identification technology: applications, technical challenges and strategies. Sensor Review

  • Kühl HS, Burghardt T (2013) Animal biometrics: quantifying and detecting phenotypic appearance. Trends Ecol Evol 28(7):432–441

    PubMed  Google Scholar 

  • Lahiri M, Tantipathananandh C, Warungu R, Rubenstein DI, Berger-Wolf TY (2011) Biometric animal databases from field photographs: identification of individual zebra in the wild. In: Proceedings of the 1st ACM international conference on multimedia retrieval. pp 1–8

  • Laity KM (2015) Field validation of the footprint identification technology on free-roaming cheetahs in Namibia. Duke University

  • LaRue MA, Stapleton S, Anderson M (2017) Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv Biol 31(1):213–220

    PubMed  Google Scholar 

  • Li BV, Alibhai S, Jewell Z, Li D, Zhang H (2018) Using footprints to identify and sex giant pandas. Biol Conserv 218:83–90

    Google Scholar 

  • Liebenberg L, Blake E, Steventon L, Benadie K, Minye J (1998) Integrating traditional knowledge with computer science for the conservation of biodiversity. In: 8th International Conference on Hunting and Gathering Societies Foraging and Post-Foraging Societies: History, Politics, and Future. pp 26–30

  • Liebenberg L, Steventon L, Benadie K, Minye J (1999) Rhino tracking with the cybertracker field computer. Pachyderm 27:59–61

    Google Scholar 

  • Liebenberg L, Louw A, Elbroch M (2010) Practical tracking: a guide to following footprints and finding animals. Stackpole Books

  • Linchant J, Lisein J, Semeki J, Lejeune P, Vermeulen C (2015) Are unmanned aircraft systems (UAS) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev 45(4):239–252

    Google Scholar 

  • Loos A, Ernst A (2013) An automated chimpanzee identification system using face detection and recognition. EURASIP Journal on Image and Video Processing 1:49

    Google Scholar 

  • Loos A, Weigel C, Koehler M (2018) Towards automatic detection of animals in camera-trap images. In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, pp 1805–1809

  • Lopes MT, Gioppo LL, Higushi TT, Kaestner CA, Silla Jr CN, Koerich AL (2011) Automatic bird species identification for large number of species. In: 2011 IEEE International Symposium on Multimedia. IEEE, pp 117–122

  • Makgantai B, Subaschandar N, Jamisola RS (2021) Design optimization of wingtip devices to reduce induced drag on fixed-wings. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp 1459–1465

  • Malisiewicz T, Shrivastava A, Gupta A, Efros AA (2012) Exemplar-svms for visual ob ject detection, label transfer and image retrieval. In: ICML

  • Marais JC (2018) Automated elephant detection and classification from aerial infrared and colour images using deep learning. PhD thesis, Stellenbosch: Stellenbosch University

  • Matipano G (2004) Black rhinoceros mortality in Matusadona National Park, Zimbabwe: 1992–2003. IUCN, p 109

  • Matkowski WM, Kong AWK, Su H, Chen P, Hou R, Zhang Z (2019) Giant panda face recognition using small dataset. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE, pp 1680–1684

  • McComb K, Reby D, Baker L, Moss C, Sayialel S (2003) Long-distance communication of acoustic cues to social identity in African elephants. Anim Behav 65(2):317–329

    Google Scholar 

  • Meek P, Ballard G, Claridge A, Kays R, Moseby K, O’brien T, O’connell A, Sanderson J, Swann D, Tobler M et al (2014) Recommended guiding principles for reporting on camera trapping research. Biodivers Conserv 23(9):2321–2343

  • Meek PD, Ballard GA, Vernes K, Fleming PJ (2015) The history of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy 37(1):1–12

    Google Scholar 

  • Mendoza E, Martineau PR, Brenner E, Dirzo R (2011) A novel method to improve individual animal identification based on camera-trapping data. J Wildl Manag 75(4):973–979

    Google Scholar 

  • Mmereki W, Jamisola RS, Mpoeleng D, Petso T (2021) YOLOv3-based human activity recognition as viewed from a moving high-altitude aerial camera. In: 2021 7th International Conference on Automation, Robotics and Applications (ICARA). IEEE, pp 241–246

  • Mohd-Azlan J (2009) The use of camera traps in Malaysian rainforests. Journal of Tropical Biology and Conservation 5:81–86

    Google Scholar 

  • Morrison TA, Keinath D, Estes-Zumpf W, Crall JP, Stewart CV (2016) Individual identification of the endangered wyoming toad anaxyrus baxteri and implications for monitoring species recovery. J Hered 50(1):44–49

    Google Scholar 

  • Mortimer B, Rees WL, Koelemeijer P, Nissen-Meyer T (2018) Classifying elephant behaviour through seismic vibrations. Current Biology 28(9):R547–R548

    CAS  PubMed  Google Scholar 

  • Mulero-Pázmány M, Stolper R, Van Essen L, Negro JJ, Sassen T (2014) Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PloS One 9(1):e83873

  • Münster D, Münster U (2012) Human-animal conflicts in Kerala: Elephants and ecological modernity on the agrarian frontier in South India. RCC Perspectives 5:41–50

    Google Scholar 

  • Naude J, Joubert D (2019) The aerial elephant dataset: a new public benchmark for aerial object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp 48–55

  • Nguyen H, Maclagan SJ, Nguyen TD, Nguyen T, Flemons P, Andrews K, Ritchie EG, Phung D (2017) Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring. In: 2017 IEEE international conference on data science and advanced Analytics (DSAA). IEEE, pp 40–49

  • Nipko RB, Holcombe BE, Kelly MJ (2020) Identifying individual jaguars and ocelots via pattern-recognition software: Comparing hotspotter and wild-id. Wildl Soc Bull 44(2):424–433

    Google Scholar 

  • Norouzzadeh MS, Nguyen A, Kosmala M, Swanson A, Palmer MS, Packer C, Clune J (2018) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc Natl Acad Sci 115(25):E5716–E5725

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell-Rodwell CE (2007) Keeping an “ear” to the ground: seismic communication in elephants. Physiology 22(4):287–294

    PubMed  Google Scholar 

  • Oishi Y, Oguma H, Tamura A, Nakamura R, Matsunaga T (2018) Animal detection using thermal images and its required observation conditions. Remote Sens 10(7):1050

    Google Scholar 

  • Olivares-Mendez M, Fu C, Ludivig P, Bissyandé T, Kannan S, Zurad M, Annaiyan A, Voos H, Campoy P (2015) Towards an autonomous vision-based unmanned aerial system against wildlife poachers. Sensors 15(12):31362–31391

    PubMed  PubMed Central  Google Scholar 

  • Ovaskainen O, Moliterno de Camargo U, Somervuo P (2018) Animal Sound Identifier (ASI): software for automated identification of vocal animals. Ecol Lett 21(8):1244–1254

    PubMed  Google Scholar 

  • Pabico JP, Gonzales AMV, Villanueva MJS, Mendoza AA (2015) Automatic identification of animal breeds and species using bioacoustics and artificial neural networks. arXiv preprint arXiv:150705546

  • Patton F (2017) The use of ear tufts to assist in the identification of individual black rhinos. Pachyderm 58:148–151

    Google Scholar 

  • Patton F, Campbell P (2011) Using eye and profile wrinkles to identify individual white rhinos. Pachyderm J African Elephant, African Rhino Asian Rhino Spec Groups 84–86

  • Patton F, Jones M (2010) Âdetermining the suitability of using eye wrinkle patterns for the accurate identification of individual black rhinosê. Pachyderm 48:18–23

    Google Scholar 

  • Patton F, Campbell P, Parfet E (2007) Establishing a monitoring system for black rhinos in the Solio Game Reserve, central Kenya. Pachyderm 43:87–95

    Google Scholar 

  • Payne KB, Thompson M, Kramer L (2003) Elephant calling patterns as indicators of group size and composition: the basis for an acoustic monitoring system. Afr J Ecol 41(1):99–107

    Google Scholar 

  • Pollard KA, Blumstein DT, Griffin SC (2010) Pre-screening acoustic and other natural signatures for use in noninvasive individual identification. J Appl Ecol 47(5):1103–1109

    Google Scholar 

  • Potamitis I (2014) Automatic classification of a taxon-rich community recorded in the wild. PloS One 9(5)

  • Priyadarshani N, Marsland S, Castro I (2018) Automated birdsong recognition in complex acoustic environments: a review. J Avian Biol 49(5):jav–01447

  • Rai P, Golchha V, Srivastava A, Vyas G, Mishra S (2016) An automatic classification of bird species using audio feature extraction and support vector machines. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol 1. IEEE, pp 1–5

  • Raj A, Choudhary P, Suman P (2015) Identification of tigers through their pugmark using pattern recognition. HCTL Open International Journal of Technology Innovations and Research (IJTIR) 15

  • Ramalepa LP, Jamisola RS (2021) A review on cooperative robotic arms with mobile or drones bases. Int J Autom Comput 1–20

  • Rey N, Volpi M, Joost S, Tuia D (2017) Detecting animals in African Savanna with UAVs and the crowds. Remote Sens Environ 200:341–351

    Google Scholar 

  • Saleh K, Hossny M, Nahavandi S (2016) Kangaroo vehicle collision detection using deep semantic segmentation convolutional neural network. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, pp 1–7

  • Schneider S, Taylor GW, Kremer S (2018) Deep learning object detection methods for ecological camera trap data. In: 2018 15th Conference on Computer and Robot Vision (CRV). IEEE, pp 321–328

  • Schofield D, Nagrani A, Zisserman A, Hayashi M, Matsuzawa T, Biro D, Carvalho S (2019) Chimpanzee face recognition from videos in the wild using deep learning. Sci Adv 5(9):eaaw0736

  • Schwartz AL, Shilling FM, Perkins SE (2020) The value of monitoring wildlife roadkill. Eur J Wildl Res 66(1):1–12

    Google Scholar 

  • Seymour AC, Dale J, Hammill M, Halpin P, Johnston D (2017) Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci Rep 7:45127. https://doi.org/10.1038/srep45127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafie AA, Hafiz F, Ali M et al (2009) Motion detection techniques using optical flow. World Acad Sci Eng Technol 56:559–561

    Google Scholar 

  • Sharma S, Jhala Y, Sawarkar VB (2005) Identification of individual tigers (Panthera Tigris) from their pugmarks. J Zool 267(1):9–18

    Google Scholar 

  • Sherley RB, Burghardt T, Barham PJ, Campbell N, Cuthill IC (2010) Spotting the difference: towards fully-automated population monitoring of African penguins Spheniscus Demersus. Endanger Species Res 11(2):101–111

    Google Scholar 

  • Shrader AM, Beauchamp B (2001) A new method for implanting radio transmitters into horns of black and white rhinoceroses

  • Shukla A, Cheema GS, Anand S, Qureshi Q, Jhala Y (2019) Primate face identification in the wild. In: Pacific Rim International Conference on Artificial Intelligence. Springer, pp 387–401

  • Sirmacek B, Wegmann M, Cross A, Hopcraft J, Reinartz P, Dech S (2012) Automatic population counts for improved wildlife management using aerial photography

  • Soltis J (2010) Vocal communication in African elephants (Loxodonta africana). Zoo Biol 29(2):192–209

    PubMed  Google Scholar 

  • Soltis J, Leong K, Savage A (2005) African elephant vocal communication I: antiphonal calling behaviour among affiliated females. Anim Behav 70(3):579–587

    Google Scholar 

  • Stander P, Ghau I, Tsisaba Do, Oma I, VI (1997) Tracking and the interpretation of spoor: a scientifically sound method in ecology. J Zool 242(2):329–341

  • Stein A, Erckie B, Fuller TK, Marker L (2010) Camera trapping as a method for monitoring rhino populations within the waterberg plateau park, Namibia. Pachyderm 48:67–70

    Google Scholar 

  • Stevenson BC, Borchers DL, Fewster RM (2019) Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations. Biometrics 75(1):326–336

    PubMed  Google Scholar 

  • Stowell D, Benetos E, Gill LF (2017) On-bird sound recordings: automatic acoustic recognition of activities and contexts. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25(6):1193–1206

    Google Scholar 

  • Stowell D, Petrusková T, Šálek M, Linhart P (2019) Automatic acoustic identification of individuals in multiple species: improving identification across recording conditions. J R Soc Interface 16(153):20180940

    PubMed  PubMed Central  Google Scholar 

  • Subedi N, Jnawali SR, Dhakal M, Pradhan NM, Lamichhane BR, Malla S, Amin R, Jhala YV (2013) Population status, structure and distribution of the greater one-horned Rhinoceros Rhinoceros Unicornis in Nepal. Oryx 47(3):352–360

    Google Scholar 

  • Suriyamongkol T, Mali I (2018) Feasibility of using computer-assisted software for recognizing individual Rio Grande Cooter (Pseudemys Gorzugi). Copeia 106(4):646–651

    Google Scholar 

  • Suter SM, Giordano M, Nietlispach S, Apollonio M, Passilongo D (2017) Non-invasive acoustic detection of wolves. Bioacoustics 26(3):237–248

    Google Scholar 

  • Suwal T (2015) Assessing the use of footprint identification technique to monitor Bengal tigers in Nepal. PhD thesis, Duke University

  • Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeney SJ, VerCauteren KC, Snow NP, Halseth JM, Di Salvo PA, Lewis JS, White MD et al (2019) Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol Evol 10(4):585–590

    Google Scholar 

  • Talukdar BK (2009) Asian Rhino Specialist Group report/rapport du groupe de spécialistes du rhinocéros d’asie. Pachyderm 45:16–19

    Google Scholar 

  • Torney CJ, Dobson AP, Borner F, Lloyd-Jones DJ, Moyer D, Maliti HT, Mwita M, Fredrick H, Borner M, Hopcraft JGC (2016) Assessing rotation-invariant feature classification for automated wildebeest population counts. PloS one 11(5):e0156342

    PubMed  PubMed Central  Google Scholar 

  • Ungar ED, Henkin Z, Gutman M, Dolev A, Genizi A, Ganskopp D (2005) Inference of animal activity from GPS collar data on free-ranging cattle. Rangel Ecol Manag 58(3):256–266

    Google Scholar 

  • Valletta JJ, Torney C, Kings M, Thornton A, Madden J (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220

    Google Scholar 

  • Van Nguyen H, Chesser M, Chen F, Rezatofighi SH, Ranasinghe DC (2018) Autonomous UAV sensor system for searching and locating VHF radio-tagged wildlife. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. pp 333–334

  • Varble S, Secchi S (2013) Human consumption as an invasive species management strategy. a preliminary assessment of the marketing potential of invasive Asian carp in the US. Appetite 65:58–67

    PubMed  Google Scholar 

  • Vidya T, Prasad D, Ghosh A (2014) Individual identification in Asian elephants. Gajah 40:3–17

    Google Scholar 

  • Villa AG, Salazar A, Vargas F (2017) Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Eco Inform 41:24–32

    Google Scholar 

  • Ward S, Hensler J, Alsalam B, Gonzalez LF (2016) Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision. In: 2016 IEEE Aerospace Conference. IEEE, pp 1–8

  • Webber D, Hui N, Kastner R, Schurgers C (2017) Radio receiver design for unmanned aerial wildlife tracking. 2017 International Conference on Computing Networking and Communications (ICNC). IEEE, pp 942–946

    Google Scholar 

  • Wich SA (2015) Drones and conservation. Drones and Aerial Observation: New Technologies for Property Rights, Human Rights, and Global Development Washington DC: New America. pp 63–70

  • Willi M, Pitman RT, Cardoso AW, Locke C, Swanson A, Boyer A, Veldthuis M, Fortson L (2019) Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol Evol 10(1):80–91

    Google Scholar 

  • Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H, Wang C (2018) Machine learning and deep learning methods for cybersecurity. IEEE Access 6:35365–35381

    Google Scholar 

  • Xu S, Savvaris A, He S, Shin Hs, Tsourdos A (2018) Real-time implementation of YOLO+ JPDA for small scale UAV multiple object tracking. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp 1336–1341

  • Yen GG, Fu Q (2001) Automatic frog calls monitoring system: a machine learning approach. Int J Comput Intell Appl 1(02):165–186

    Google Scholar 

  • Yousif H, Yuan J, Kays R, He Z (2017) Fast human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. In: 2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4

  • Yu X, Wang J, Kays R, Jansen PA, Wang T, Huang T (2013) Automated identification of animal species in camera trap images. EURASIP Journal on Image and Video Processing 2013(1):52

    Google Scholar 

  • Zahrani MS, Ragab K, Haque AU (2011) Design of GPS-based system to avoid camel-vehicle collisions: A. Asian J Appl Sci 4(4):362–377

    Google Scholar 

  • Zeppelzauer M (2013) Automated detection of elephants in wildlife video. EURASIP Journal on Image and Video Processing 2013(1):46

    PubMed  PubMed Central  Google Scholar 

  • Zeppelzauer M, Stoeger AS (2015) Establishing the fundamentals for an elephant early warning and monitoring system. BMC Res Notes 8(1):409

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang M, Chen T, Sun Z, Ma Y, Yu B (2019) Recent advances in convolutional neural network acceleration. Neurocomputing 323:37–51

    Google Scholar 

  • Zhou D, Wang J (2011) Identification of deer in thermal images to avoid deer-vehicle crashes. In: Proceedings of 2011 International Conference on Electronics and Optoelectronics, vol 3. IEEE, pp V3–342

  • Zhou D, Wang J, Wang S (2012) Countour based HOG deer detection in thermal images for traffic safety. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), The Steering Committee of The World Congress in Computer Science, Computer. p 1

Download references

Acknowledgements

The authors would like to acknowledge the funding support on this work from the Botswana International University of Science and Technology (BIUST) Drones Project with project number P00015.

Author information

Authors and Affiliations

Authors

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

All authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petso, T., Jamisola, R.S. & Mpoeleng, D. Review on methods used for wildlife species and individual identification. Eur J Wildl Res 68, 3 (2022). https://doi.org/10.1007/s10344-021-01549-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-021-01549-4

Keywords

Navigation