Skip to main content
Log in

Synthesis of Nickel–Carbon Nanocomposites Using the Mechanical Treatment of Polyvinyl Chloride in the Presence of Nickel Nitrate and Diethylamine

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The dehydrochlorination of polyvinyl chloride with diethylamine in the presence of nickel nitrate was carried out on mechanical processing in a high-energy planetary mill. The subsequent heat treatment of the resulting product to 400°C led to the formation of a metal–carbon nanocomposite, in which nickel nanoparticles 50–100 nm in diameter were distributed in an amorphous carbon matrix. The nickel–carbon nanocomposite exhibited catalytic activity in the process of methane conversion at 800°C. Deposits of ordered nanosized carbon structures of two types were observed on metal particles: a graphite-like shell containing up to 80 layers with an interlayer distance of 0.36 nm and bamboo-like nanotubes with a diameter of 30–80 nm. The structure of the resulting products was investigated by transmission and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Galaburda, M.V., Bogatyrov, V.M., Tomaszewski, W., Oranska, O.I., Borysenko, M.V., Skubiszewska-Zieba, J., and Glin’ko, V.M., Colloids Surf. A, 2017, vol. 529, p. 950. https://doi.org/10.1016/j.colsurfa.2017.06.087

    Article  CAS  Google Scholar 

  2. Carreno, N.L.V., Garcia, I.T.S., Raubach, C.W., Krolow, M., Santos, C.C.G., Probst, L.F.D., and Fajardo, H.V., J. Power Sources, 2009, vol. 188, p. 1016. https://doi.org/10.1016/j.jpowsour.2008.12.004

    Article  CAS  Google Scholar 

  3. Nanocarbon 2011, Avellaneda, C., Ed., Berlin: Springer, 2013, vol. 1. https://doi.org/10.1007/978-3-642-31960-0

    Book  Google Scholar 

  4. Kuang, D., Hou, L., Wang, Sh., Yu B., Lianwen D., Lin L., Huang H., He J., and Song M., Mater. Res. Express, 2018, vol. 5, no. 9. https://doi.org/10.1088/2053-1591/aad661

  5. Li, X.L., Tian, X.L., Zhang, D.W., Chen, X.Y., and Liu, D.J., Mater. Sci. Eng., 2008, vol. 151, p. 220. https://doi.org/10.1016/j.mseb.2008.09.016

    Article  CAS  Google Scholar 

  6. Galaburda, M.V., Bogatyrov, V.M., Oranska, O., Skubiszewska-Zieba, J., Glin’ko, V.M., and Sternik, D., Adsorpt. Sci. Technol., 2015, vol. 33, p. 6. https://doi.org/10.1260/0263-6174.33.6-8.523

    Article  Google Scholar 

  7. Schatz, A., Reiser, O., and Stark, W., Chem. Eur. J., 2010, vol. 16, p. 8950. https://doi.org/10.1002/chem.200903462

    Article  CAS  PubMed  Google Scholar 

  8. Stein, M., Wieland, J., Steurer, P., and Tolle, F., Adv. Synth. Catal., 2011, vol. 353, p. 523. https://doi.org/10.1002/adsc.201000877

    Article  CAS  Google Scholar 

  9. Ramu, V.G., Bordoloi, A., Nagaiah, T.C., Schuhmann, W., Muhler, M., and Cabrele, C., Appl. Catal. A-Gen., 2012, vol. 431, no. 26, p. 88. https://doi.org/10.1016/j.apcata.2012.04.019

    Article  CAS  Google Scholar 

  10. Li, H., Zhaoa, N., Hea, C., Li, H., Zhao, N., He, C., Shi, C., Du, X., and Li, J., J. Alloys Comp., 2008, vol. 458, p. 130. https://doi.org/10.1016/j.jallcom.2007.03.135

    Article  CAS  Google Scholar 

  11. Ashik, U.P.M., Daud, W.M.A.W., and Abbas, H.F., Ren. Sust. En. Rev., 2015, vol. 44, p. 221. https://doi.org/10.1016/j.rser.2014.12.025

    Article  CAS  Google Scholar 

  12. Zhang, J., Li, X., Chen, H., Qi, M., Zhang, G., Hu, H., and Ma, X., Int. J. Hydr. En., 2017, vol. 42, p. 19755. https://doi.org/10.1016/j.ijhydene.2017.06.197

  13. Kryazhev, Yu.G., Zapevalova, E.S., Semenova, O.N., Maslakov, K.I., Trenikhin, M.V., and Likholobov, V.A., Nanotechnol. Russ., 2016, vol. 11, p. 414. https://doi.org/10.1134/s1995078016040091

    Article  CAS  Google Scholar 

  14. Kryazhev, Yu.G., Zapevalova, E.S., Semenova, O.N., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 268. https://doi.org/10.7868/S0044185617020152

    Article  CAS  Google Scholar 

  15. Lipik, V.T., Martsul’, V.N., and Abadie, M.J., Polymer Sci. Ser. A, 2003, vol. 45, p. 1225.

    Google Scholar 

  16. Buekens, A. and Cen, K., J. Mater. Cycles Waste Manag., 2011, vol. 13, p. 190. https://doi.org/10.1007/s10163-011-0018-9

    Article  CAS  Google Scholar 

  17. Solodovnichenko, V.S., Polyboyarov, V.A., Zhdanok, A.A., Zapevalova, E.S., Kryazhev, Yu.G., and Likholobov, V.A., Proc. Eng., 2016, vol. 152, p. 747. https://doi.org/10.1016/j.proeng.2016.07.684

    Article  CAS  Google Scholar 

  18. Anikeeva, I.V., Kryazhev, Yu.G., Arbuzov, A.B., Talzi, V.P., Gulyaeva, T.I., and Drozdov, V.A., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, p. 1830. https://doi.org/10.1134/S1070427218110137

    Article  CAS  Google Scholar 

  19. Zhu, W., Miser, D.E., Chan, W.G., and Hajaligol, M.R., Carbon, 2004, vol. 42, p. 1841.

    Article  CAS  Google Scholar 

  20. Shim, H.-Sh., Hurt, R.H., and Yang, N.Y.C., Carbon, 2000, vol. 38, p. 29.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Physicochemical research methods were carried out using the instrumentation base of the Omsk Regional Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences. We are grateful to T.I. Gulyaeva and R.R. Izmailov for their assistance in the experiments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state contract of the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011490008-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Zapevalova, M. V. Trenikhin or Yu. G. Kryazhev.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapevalova, E.S., Trenikhin, M.V. & Kryazhev, Y.G. Synthesis of Nickel–Carbon Nanocomposites Using the Mechanical Treatment of Polyvinyl Chloride in the Presence of Nickel Nitrate and Diethylamine. Solid Fuel Chem. 55, 374–379 (2021). https://doi.org/10.3103/S036152192106015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S036152192106015X

Keywords:

Navigation