Skip to main content
Log in

Optimization of Smokeless Fuel Production from Lignite by Taguchi Orthogonal Design

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

In this study, the pyrolysis of Konya Ermenek lignite was carried out under different conditions in N2 gas flow.Temperature (400, 500, 600 and 700°C), heating rate (5, 10, 15 and 20°C/min), flow rates of gas (100, 150, 200 and 250 cc/min) and residence time (45, 60, 75 and 90 min) were selected as experimental parameters. Taguchi experimental design was used to optimize pyrolysis parameters.The orthogonal array design plan was determined as L16 according to the available variables. Since the study aims to obtain smokeless fuel, char (solid) yields (CY) from the results are taken into consideration. And signal/noise (S/N) ratios of each test condition were calculated. As a result of the experiments, it was seen that the maximum CY and S/N ratio was obtained in Test No 1. As a result of the pyrolysis tests performed under the optimization conditions, it was determined that the S/N ratio was 35.21 and the CY was 57.63%. In addition, variance analysis (ANOVA) was applied to the test results and the percentage contributions of each factor for the char yields were determined. The maximum char yield was achieved using the optimized conditions were: pyrolysis temperature of 400°C, residence time 75 min, heating rate 20°C/min and flow rate of N2 100 cc/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kumar, R. and Tembhurne, Y.K., Int. J. Mech. Eng. Technol., 2016, vol. 7, no. 1, p. 172.

    CAS  Google Scholar 

  2. Kural, O., Coal Resources, Properties, Utilization, Pollution, Istanbul: Ozgun Press, 1994, p. 89.

    Google Scholar 

  3. Li, D., Zhang, Y., Dong, H., Du, Q., Gao, J., and Cui, Z., Fuel, 2020, vol. 270, p. 1. https://doi.org/10.1021/acs.energyfuels.0c00760

    Article  CAS  Google Scholar 

  4. Zhu, Y., Wen, W., Li, Y., Lu, L., Yang, J., and Xu, M., J. Energy Inst., 2019, vol. 93, p. 405. https://doi.org/10.1016/j.joei.2019.01.016

    Article  CAS  Google Scholar 

  5. Gonenc, Z.S., Fowler, T.G., Kandiyoti, R., and Bartle, K.D., Fuel, 1988, vol. 67, no. 6, p. 848.

    Article  CAS  Google Scholar 

  6. Gonenc, Z.S., Gibbins, J.R., Katheklakis, I.E., and Kandiyoti, R., Fuel, 1990, vol. 69, no. 3, p. 383.

    Article  CAS  Google Scholar 

  7. Karmakar, B., Dhawane, S.H., and Halder, G., J. Environ. Chem. Eng., 2018, vol. 6, p. 2684. https://doi.org/10.1016/j.jece.2018.04.019

    Article  CAS  Google Scholar 

  8. Flores, R.A.C., Garcia, F.P., Sanchez, E.M.O., Miro, A.M.B., and Sandoval, O.A.A., Bulg. J. Agric. Sci., 2018, vol. 24, no. 2, p. 263. https://doi.org/10.20944/preprints201712.0087.v1

    Article  Google Scholar 

  9. Roozbehani, B., Sakaki, S.A., Shishesaz, M., Abdollahkhani, N., and Hamedifar, S., Clean Tech. Environ. Policy, 2015, vol. 17, p. 1873. https://doi.org/10.1007/s10098-015-0901-5

    Article  CAS  Google Scholar 

  10. Syed-Hassan, S.S.A. and Zaini, M.S.M., Korean J. Chem. Eng., 2016, vol. 40, p. 1. https://doi.org/10.1007/s11814-016-0072-z

    Article  CAS  Google Scholar 

  11. Abd, N.I., Al-Mayah, A.M., and Muallah, S.K., Int. J. Eng. Technol., 2018, vol. 7, no. 4, p. 121. https://doi.org/10.14419/ijet.v7i4.37.24086

    Article  CAS  Google Scholar 

  12. Roy, R.K., A Primer on the Taguchi Method, New York: Van Nostrand Reinhold, 1995, p. 68.

    Google Scholar 

  13. Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H., Amirmahmoodi, S., and Ghafari-Nazari, A., J. Hazard. Mater., 2011, vol. 192, p. 1046. https://doi.org/10.1016/j.jhazmat.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  14. Zirehpour, A., Rahimpour, A., Jahanshahi, M., and Peyravi, M., J. Environ. Manage., 2014, vol. 132, p. 113. https://doi.org/10.1016/j.jenvman.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  15. Saydut, A., Duz, M.Z., Erdogan, S., and Hamamci, C., Energy Sources Part A, 2010, vol. 32, p. 1821. ,https://doi.org/10.1080/15567030902882992

    Article  CAS  Google Scholar 

  16. Yan, D., Guo, J., Wang, M., Tian, J., Kong, J., Hu, Y., and Chang, L., J. Anal. Appl. Pyrolysis, 2019, vol. 137, p. 212. https://doi.org/10.1016/j.jaap.2018.11.028

    Article  CAS  Google Scholar 

  17. Wu, Z., Yang, W., Li, Y., and Yang, B., Biores. Technol., 2018, vol. 255, p. 238. https://doi.org/10.1016/j.biortech.2018.01.141

    Article  CAS  Google Scholar 

  18. Guldogan, Y., Bozdemir, T.O., and Durusoy, T., Energy Sources, 2000, vol. 22, p. 305. https://doi.org/10.1080/00908310050013901

    Article  CAS  Google Scholar 

  19. Ross, P.J., Taguchi Techniques for Quality Engineering, New York: McGraw-Hill, 1996, p. 187.

    Google Scholar 

  20. Zhong, M., Gao, S., Zhou, Q., Yue, J., Ma, F., and Xu, G., Particuology, 2016, vol. 25, p. 59. https://doi.org/10.1016/j.partic.2014.12.018

    Article  CAS  Google Scholar 

  21. Baruah, B.P. and Khare, P., Energy Fuels, 2007, vol. 21, p. 3346. https://doi.org/10.1021/ef070005i

    Article  CAS  Google Scholar 

  22. Haykiri-Acma, H. Yaman, S., and Kucukbayrak, S., Energy Educ. Sci. Technol. Part A: Energy Sci. Res., 2012, vol. 29, no. 2, p. 1203.

    CAS  Google Scholar 

  23. Shi, Y. Li, S., and Hu, H, J. Anal. Appl. Pyrolysis, 2012, vol. 95, p. 75. https://doi.org/10.1016/j.jaap.2012.01.008

    Article  CAS  Google Scholar 

  24. Mo, C., Shifeng, Z., Yanyan, Y., and Yunpeng, D., Energy Procedia, 2012, vol. 16, p. 307. https://doi.org/10.1016/j.egypro.2012.01.051

    Article  CAS  Google Scholar 

  25. Wei, Q., Qiang, X., Yuyi, H., Jiatao, D., Kaidi, S., Qian, Y., and Jincao, W., Int. J. Min. Sci. Technol., 2012, vol. 22, p. 645. https://doi.org/10.1016/j.ijmst.2012.08.009

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydan Aksoğan Korkmaz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, A.A. Optimization of Smokeless Fuel Production from Lignite by Taguchi Orthogonal Design. Solid Fuel Chem. 55, 444–449 (2021). https://doi.org/10.3103/S0361521921060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521921060082

Keywords:

Navigation