Skip to main content

Advertisement

Log in

Heterogeneity of white matter astrocytes in the human brain

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H et al (1998) Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol 161:5016–5026

    CAS  PubMed  Google Scholar 

  2. Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP et al (2020) Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 8:19. https://doi.org/10.1186/s40478-020-0880-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. https://doi.org/10.1016/j.neulet.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  4. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200. https://doi.org/10.1038/nature17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. https://doi.org/10.1038/nature09613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N et al (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci U S A 101:8384–8389. https://doi.org/10.1073/pnas.0402140101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972. https://doi.org/10.1038/nm1279

    Article  CAS  PubMed  Google Scholar 

  8. Baltan S (2015) Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health? Metab Brain Dis 30:25–30. https://doi.org/10.1007/s11011-014-9595-3

    Article  CAS  PubMed  Google Scholar 

  9. Barnett SC, Linington C (2013) Myelination: do astrocytes play a role? Neuroscientist 19:442–450. https://doi.org/10.1177/1073858412465655

    Article  CAS  PubMed  Google Scholar 

  10. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440. https://doi.org/10.1016/j.neuron.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  11. Barth PG (2002) The neuropathology of Aicardi–Goutieres syndrome. Eur J Paediatr Neurol 6(Suppl A):A27-31 (discussion A37–29, A77–86)

    Article  Google Scholar 

  12. Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2014) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7:a020362. https://doi.org/10.1101/cshperspect.a020362

    Article  PubMed  Google Scholar 

  13. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22:269–285. https://doi.org/10.1016/j.celrep.2017.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boon BDC, Bulk M, Jonker AJ, Morrema THJ, van den Berg E, Popovic M et al (2020) The coarse-grained plaque: a divergent Abeta plaque-type in early-onset Alzheimer’s disease. Acta Neuropathol 140:811–830. https://doi.org/10.1007/s00401-020-02198-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boor PK, de Groot K, Waisfisz Q, Kamphorst W, Oudejans CB, Powers JM et al (2005) MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol 64:412–419

    Article  CAS  Google Scholar 

  16. Bradley RA, Shireman J, McFalls C, Choi J, Canfield SG, Dong Y et al (2019) Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development. https://doi.org/10.1242/dev.170910

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27:117. https://doi.org/10.1038/83679

    Article  CAS  PubMed  Google Scholar 

  18. Bugiani M, Boor I, Powers JM, Scheper GC, van der Knaap MS (2010) Leukoencephalopathy with vanishing white matter: a review. J Neuropathol Exp Neurol 69:987–996. https://doi.org/10.1097/NEN.0b013e3181f2eafa

    Article  PubMed  Google Scholar 

  19. Bugiani M, Boor I, van Kollenburg B, Postma N, Polder E, van Berkel C et al (2011) Defective glial maturation in vanishing white matter disease. J Neuropathol Exp Neurol 70:69–82. https://doi.org/10.1097/NEN.0b013e318203ae74

    Article  PubMed  Google Scholar 

  20. Bugiani M, Dubey M, Breur M, Postma NL, Dekker MP, Ter Braak T et al (2017) Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann Clin Transl Neurol 4:450–465. https://doi.org/10.1002/acn3.405

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bugiani M, Postma N, Polder E, Dieleman N, Scheffer PG, Sim FJ et al (2013) Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease. Brain 136:209–222. https://doi.org/10.1093/brain/aws320

    Article  PubMed  Google Scholar 

  22. Bugiani M, Vuong C, Breur M, van der Knaap MS (2018) Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol 28:408–421. https://doi.org/10.1111/bpa.12606

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai J, Chen Y, Cai WH, Hurlock EC, Wu H, Kernie SG et al (2007) A crucial role for Olig2 in white matter astrocyte development. Development 134:1887–1899. https://doi.org/10.1242/dev.02847

    Article  CAS  PubMed  Google Scholar 

  26. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T et al (1999) Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 835:46–61

    Article  CAS  Google Scholar 

  27. Capdevila-Nortes X, Lopez-Hernandez T, Apaja PM, Lopez de Heredia M, Sirisi S, Callejo G et al (2013) Insights into MLC pathogenesis: GlialCAM is an MLC1 chaperone required for proper activation of volume-regulated anion currents. Hum Mol Genet 22:4405–4416. https://doi.org/10.1093/hmg/ddt290

    Article  CAS  PubMed  Google Scholar 

  28. Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34:379–388. https://doi.org/10.1159/000343723

    Article  CAS  PubMed  Google Scholar 

  29. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X et al (2017) Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95(531–549):e539. https://doi.org/10.1016/j.neuron.2017.06.029

    Article  CAS  Google Scholar 

  30. Chen A, Akinyemi RO, Hase Y, Firbank MJ, Ndung’u MN, Foster V et al (2016) Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain 139:242–258. https://doi.org/10.1093/brain/awv328

    Article  PubMed  Google Scholar 

  31. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115:E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cragnolini AB, Montenegro G, Friedman WJ, Masco DH (2018) Brain-region specific responses of astrocytes to an in vitro injury and neurotrophins. Mol Cell Neurosci 88:240–248. https://doi.org/10.1016/j.mcn.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  33. Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C et al (2013) Chronic exposure of astrocytes to interferon-alpha reveals molecular changes related to Aicardi–Goutieres syndrome. Brain 136:245–258. https://doi.org/10.1093/brain/aws321

    Article  PubMed  Google Scholar 

  34. Davies SJ, Shih CH, Noble M, Mayer-Proschel M, Davies JE, Proschel C (2011) Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS ONE 6:e17328. https://doi.org/10.1371/journal.pone.0017328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Domingues HS, Portugal CC, Socodato R, Relvas JB (2016) Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol 4:71. https://doi.org/10.3389/fcell.2016.00071

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dooves S, Bugiani M, Postma NL, Polder E, Land N, Horan ST et al (2016) Astrocytes are central in the pathomechanisms of vanishing white matter. J Clin Invest 126:1512–1524. https://doi.org/10.1172/JCI83908

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dooves S, Leferink PS, Krabbenborg S, Breeuwsma N, Bots S, Hillen AEJ et al (2019) Cell replacement therapy improves pathological hallmarks in a mouse model of leukodystrophy vanishing white matter. Stem Cell Rep 12:441–450. https://doi.org/10.1016/j.stemcr.2019.01.018

    Article  CAS  Google Scholar 

  38. Dooves S, van der Knaap MS, Heine VM (2016) Stem cell therapy for white matter disorders: don’t forget the microenvironment! J Inherit Metab Dis 39:513–518. https://doi.org/10.1007/s10545-016-9925-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762. https://doi.org/10.1016/j.cell.2008.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dubey M, Brouwers E, Hamilton EMC, Stiedl O, Bugiani M, Koch H et al (2018) Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts. Ann Neurol 83:636–649. https://doi.org/10.1002/ana.25190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dubey M, Bugiani M, Ridder MC, Postma NL, Brouwers E, Polder E et al (2015) Mice with megalencephalic leukoencephalopathy with cysts: a developmental angle. Ann Neurol 77:114–131. https://doi.org/10.1002/ana.24307

    Article  CAS  PubMed  Google Scholar 

  42. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186. https://doi.org/10.1017/S1740925X06000202

    Article  PubMed  PubMed Central  Google Scholar 

  43. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C, Jones EV et al (2016) Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351:849–854. https://doi.org/10.1126/science.aab3103

    Article  CAS  PubMed  Google Scholar 

  45. Farmer WT, Murai K (2017) Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci 11:300. https://doi.org/10.3389/fncel.2017.00300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155. https://doi.org/10.1523/JNEUROSCI.3547-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fogli A, Schiffmann R, Bertini E, Ughetto S, Combes P, Eymard-Pierre E et al (2004) The effect of genotype on the natural history of eIF2B-related leukodystrophies. Neurology 62:1509–1517

    Article  CAS  Google Scholar 

  48. Garcia-Marques J, Lopez-Mascaraque L (2013) Clonal identity determines astrocyte cortical heterogeneity. Cereb Cortex 23:1463–1472. https://doi.org/10.1093/cercor/bhs134

    Article  PubMed  Google Scholar 

  49. Garcia AD, Petrova R, Eng L, Joyner AL (2010) Sonic hedgehog regulates discrete populations of astrocytes in the adult mouse forebrain. J Neurosci 30:13597–13608. https://doi.org/10.1523/JNEUROSCI.0830-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goursaud S, Kozlova EN, Maloteaux JM, Hermans E (2009) Cultured astrocytes derived from corpus callosum or cortical grey matter show distinct glutamate handling properties. J Neurochem 108:1442–1452. https://doi.org/10.1111/j.1471-4159.2009.05889.x

    Article  CAS  PubMed  Google Scholar 

  51. Goutieres F, Boulloche J, Bourgeois M, Aicardi J (1996) Leukoencephalopathy, megalencephaly, and mild clinical course. A recently individualized familial leukodystrophy. Report on five new cases. J Child Neurol 11:439–444. https://doi.org/10.1177/088307389601100604

    Article  CAS  PubMed  Google Scholar 

  52. Goyal M, Mehndiratta S, Faruq M, Dwivedi MK, Kapoor S (2014) Infantile onset alexander disease with normal head circumference: a genetically proven case report. J Clin Diagn Res 8:PD03-04. https://doi.org/10.7860/JCDR/2014/10211.5200

    Article  PubMed  PubMed Central  Google Scholar 

  53. Haas B, Schipke CG, Peters O, Sohl G, Willecke K, Kettenmann H (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb Cortex 16:237–246. https://doi.org/10.1093/cercor/bhi101

    Article  PubMed  Google Scholar 

  54. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R et al (2020) Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci 23:701–706. https://doi.org/10.1038/s41593-020-0624-8

    Article  CAS  PubMed  Google Scholar 

  55. Haim BL, Rowitch DH (2017) Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18:31–41. https://doi.org/10.1038/nrn.2016.159

    Article  CAS  PubMed  Google Scholar 

  56. Hamby ME, Coppola G, Ao Y, Geschwind DH, Khakh BS, Sofroniew MV (2012) Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci 32:14489–14510. https://doi.org/10.1523/jneurosci.1256-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harada K, Kamiya T, Tsuboi T (2015) Gliotransmitter release from astrocytes: functional, developmental, and pathological implications in the brain. Front Neurosci 9:499. https://doi.org/10.3389/fnins.2015.00499

    Article  PubMed  Google Scholar 

  58. Heaven MR, Flint D, Randall SM, Sosunov AA, Wilson L, Barnes S et al (2016) Composition of Rosenthal fibers, the protein aggregate hallmark of Alexander disease. J Proteome Res 15:2265–2282. https://doi.org/10.1021/acs.jproteome.6b00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243. https://doi.org/10.1523/JNEUROSCI.1709-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hewett JA (2009) Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem 110:1717–1736. https://doi.org/10.1111/j.1471-4159.2009.06288.x

    Article  CAS  PubMed  Google Scholar 

  61. Hill SJ, Barbarese E, McIntosh TK (1996) Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. J Neuropathol Exp Neurol 55:1221–1229

    Article  CAS  Google Scholar 

  62. Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133:510–522. https://doi.org/10.1016/j.cell.2008.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoft S, Griemsmann S, Seifert G, Steinhauser C (2014) Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus. Philos Trans R Soc Lond B Biol Sci 369:20130602. https://doi.org/10.1098/rstb.2013.0602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J et al (2017) Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 20:396–405. https://doi.org/10.1038/nn.4493

    Article  CAS  PubMed  Google Scholar 

  65. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kiray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283:541–549. https://doi.org/10.1016/j.expneurol.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kita Y, Kawakami K, Takahashi Y, Murakami F (2013) Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS ONE 8:e70091. https://doi.org/10.1371/journal.pone.0070091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klok MD, Bakels HS, Postma NL, van Spaendonk RM, van der Knaap MS, Bugiani M (2015) Interferon-alpha and the calcifying microangiopathy in Aicardi–Goutieres syndrome. Ann Clin Transl Neurol 2:774–779. https://doi.org/10.1002/acn3.213

    Article  PubMed  PubMed Central  Google Scholar 

  69. Klok MD, Bugiani M, de Vries SI, Gerritsen W, Breur M, van der Sluis S et al (2018) Axonal abnormalities in vanishing white matter. Ann Clin Transl Neurol 5:429–444. https://doi.org/10.1002/acn3.540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056. https://doi.org/10.1016/j.neuroscience.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  71. Krencik R, Weick JP, Liu Y, Zhang ZJ, Zhang SC (2011) Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 29:528–534. https://doi.org/10.1038/nbt.1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lanjakornsiripan D, Pior BJ, Kawaguchi D, Furutachi S, Tahara T, Katsuyama Y et al (2018) Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat Commun 9:1623. https://doi.org/10.1038/s41467-018-03940-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee SH, Kim WT, Cornell-Bell AH, Sontheimer H (1994) Astrocytes exhibit regional specificity in gap-junction coupling. Glia 11:315–325. https://doi.org/10.1002/glia.440110404

    Article  CAS  PubMed  Google Scholar 

  74. Leegwater PA, Yuan BQ, van der Steen J, Mulders J, Konst AA, Boor PK et al (2001) Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 68:831–838. https://doi.org/10.1086/319519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leferink PS, Breeuwsma N, Bugiani M, van der Knaap MS, Heine VM (2018) Affected astrocytes in the spinal cord of the leukodystrophy vanishing white matter. Glia 66:862–873. https://doi.org/10.1002/glia.23289

    Article  PubMed  Google Scholar 

  76. Leferink PS, Dooves S, Hillen AEJ, Watanabe K, Jacobs G, Gasparotto L et al (2019) Astrocyte subtype vulnerability in stem cell models of vanishing white matter. Ann Neurol. https://doi.org/10.1002/ana.25585

    Article  PubMed  PubMed Central  Google Scholar 

  77. Leferink PS, Heine VM (2018) The healthy and diseased microenvironments regulate oligodendrocyte properties: implications for regenerative medicine. Am J Pathol 188:39–52. https://doi.org/10.1016/j.ajpath.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  78. Li J, Zhang L, Chu Y, Namaka M, Deng B, Kong J et al (2016) Astrocytes in oligodendrocyte lineage development and white matter pathology. Front Cell Neurosci 10:119. https://doi.org/10.3389/fncel.2016.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li L, Tian E, Chen X, Chao J, Klein J, Qu Q et al (2018) GFAP mutations in astrocytes impair oligodendrocyte progenitor proliferation and myelination in an hiPSC model of alexander disease. Cell Stem Cell 23(239–251):e236. https://doi.org/10.1016/j.stem.2018.07.009

    Article  CAS  Google Scholar 

  80. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lopez-Hernandez T, Ridder MC, Montolio M, Capdevila-Nortes X, Polder E, Sirisi S et al (2011) Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 88:422–432. https://doi.org/10.1016/j.ajhg.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lundgaard I, Osorio MJ, Kress BT, Sanggaard S, Nedergaard M (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173. https://doi.org/10.1016/j.neuroscience.2013.10.050

    Article  CAS  PubMed  Google Scholar 

  83. Marshall CA, Novitch BG, Goldman JE (2005) Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J Neurosci 25:7289–7298. https://doi.org/10.1523/JNEUROSCI.1924-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McKinnon RD, Waldron S, Kiel ME (2005) PDGF alpha-receptor signal strength controls an RTK rheostat that integrates phosphoinositol 3’-kinase and phospholipase Cgamma pathways during oligodendrocyte maturation. J Neurosci 25:3499–3508. https://doi.org/10.1523/JNEUROSCI.5049-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023. https://doi.org/10.1523/JNEUROSCI.5384-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152:391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D (2004) Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cell Mol Life Sci 61:369–385. https://doi.org/10.1007/s00018-003-3143-3

    Article  CAS  PubMed  Google Scholar 

  88. Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4:585–592

    Article  CAS  Google Scholar 

  89. Min R, van der Knaap MS (2018) Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 28:372–387. https://doi.org/10.1111/bpa.12602

    Article  PubMed  PubMed Central  Google Scholar 

  90. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD et al (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907. https://doi.org/10.1101/gad.188326.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89:13–21. https://doi.org/10.1002/jnr.22482

    Article  CAS  PubMed  Google Scholar 

  92. Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J et al (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37:8706–8717. https://doi.org/10.1523/JNEUROSCI.3956-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morel L, Men Y, Chiang MSR, Tian Y, Jin S, Yelick J et al (2019) Intracortical astrocyte subpopulations defined by astrocyte reporter Mice in the adult brain. Glia 67:171–181. https://doi.org/10.1002/glia.23545

    Article  PubMed  Google Scholar 

  94. Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468

    Article  CAS  Google Scholar 

  95. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702–2720. https://doi.org/10.1007/s00018-008-8059-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nash B, Thomson CE, Linington C, Arthur AT, McClure JD, McBride MW et al (2011) Functional duality of astrocytes in myelination. J Neurosci 31:13028–13038. https://doi.org/10.1523/JNEUROSCI.1449-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nathan FM, Li S (2017) Environmental cues determine the fate of astrocytes after spinal cord injury. Neural Regen Res 12:1964–1970. https://doi.org/10.4103/1673-5374.221144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252. https://doi.org/10.1038/nature09614

    Article  CAS  PubMed  Google Scholar 

  99. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295. https://doi.org/10.1093/brain/awn109

    Article  CAS  PubMed  Google Scholar 

  100. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. https://doi.org/10.1007/978-1-61779-452-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Olabarria M, Putilina M, Riemer EC, Goldman JE (2015) Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathol 130:469–486. https://doi.org/10.1007/s00401-015-1469-1

    Article  CAS  PubMed  Google Scholar 

  104. Ono K, Takebayashi H, Ikeda K, Furusho M, Nishizawa T, Watanabe K et al (2008) Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. Dev Biol 320:456–468. https://doi.org/10.1016/j.ydbio.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  105. Orcesi S, La Piana R, Fazzi E (2009) Aicardi–Goutieres syndrome. Br Med Bull 89:183–201. https://doi.org/10.1093/bmb/ldn049

    Article  CAS  PubMed  Google Scholar 

  106. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  107. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431. https://doi.org/10.1016/j.tins.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  108. Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly JO, Ghiani CA et al (2000) Glial heterogeneity in expression of the inwardly rectifying K(+) channel, Kir4.1, in adult rat CNS. Glia 30:362–372

    Article  CAS  Google Scholar 

  109. Qian JA, Bull MS, Levitt P (1992) Target-derived astroglia regulate axonal outgrowth in a region-specific manner. Dev Biol 149:278–294

    Article  CAS  Google Scholar 

  110. Quinlan RA, Brenner M, Goldman JE, Messing A (2007) GFAP and its role in Alexander disease. Exp Cell Res 313:2077–2087. https://doi.org/10.1016/j.yexcr.2007.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Raff MC, Abney ER, Cohen J, Lindsay R, Noble M (1983) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci 3:1289–1300

    Article  CAS  Google Scholar 

  112. Reemst K, Noctor SC, Lucassen PJ, Hol EM (2016) The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 10:566. https://doi.org/10.3389/fnhum.2016.00566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619. https://doi.org/10.1523/JNEUROSCI.0790-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reichenbach N, Delekate A, Plescher M, Schmitt F, Krauss S, Blank N et al (2019) Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med. https://doi.org/10.15252/emmm.201809665

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ridder MC, Boor I, Lodder JC, Postma NL, Capdevila-Nortes X, Duarri A et al (2011) Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain 134:3342–3354. https://doi.org/10.1093/brain/awr255

    Article  PubMed  Google Scholar 

  116. Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31:538–548. https://doi.org/10.1523/JNEUROSCI.3516-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Salvi F, Aoki Y, Della Nave R, Vella A, Pastorelli F, Scaglione C et al (2005) Adult Alexander’s disease without leukoencephalopathy. Ann Neurol 58:813–814. https://doi.org/10.1002/ana.20634

    Article  PubMed  Google Scholar 

  118. Sase S, Takanohashi A, Vanderver A, Almad A (2018) Astrocytes, an active player in Aicardi–Goutieres syndrome. Brain Pathol 28:399–407. https://doi.org/10.1111/bpa.12600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725. https://doi.org/10.1002/glia.20374

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shannon C, Salter M, Fern R (2007) GFP imaging of live astrocytes: regional differences in the effects of ischaemia upon astrocytes. J Anat 210:684–692. https://doi.org/10.1111/j.1469-7580.2007.00731.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  122. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896. https://doi.org/10.1016/j.neuroscience.2004.09.053

    Article  CAS  PubMed  Google Scholar 

  123. Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E et al (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136:147–167. https://doi.org/10.1093/brain/aws262

    Article  PubMed  Google Scholar 

  124. Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107:11555–11560. https://doi.org/10.1073/pnas.1006496107

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7:a020420. https://doi.org/10.1101/cshperspect.a020420

    Article  PubMed  Google Scholar 

  126. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  128. Sosunov A, Olabarria M, Goldman JE (2018) Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 28:388–398. https://doi.org/10.1111/bpa.12601

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sosunov AA, Guilfoyle E, Wu X, McKhann GM 2nd, Goldman JE (2013) Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J Neurosci 33:7439–7450. https://doi.org/10.1523/JNEUROSCI.4506-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM 2nd, Goldman JE (2014) Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci 34:2285–2298. https://doi.org/10.1523/JNEUROSCI.4037-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tabata H (2015) Diverse subtypes of astrocytes and their development during corticogenesis. Front Neurosci 9:114. https://doi.org/10.3389/fnins.2015.00114

    Article  PubMed  PubMed Central  Google Scholar 

  132. Takouda J, Katada S, Nakashima K (2017) Emerging mechanisms underlying astrogenesis in the developing mammalian brain. Proc Jpn Acad Ser B Phys Biol Sci 93:386–398. https://doi.org/10.2183/pjab.93.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Teijido O, Casaroli-Marano R, Kharkovets T, Aguado F, Zorzano A, Palacin M et al (2007) Expression patterns of MLC1 protein in the central and peripheral nervous systems. Neurobiol Dis 26:532–545. https://doi.org/10.1016/j.nbd.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  134. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337:358–362. https://doi.org/10.1126/science.1222381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Uggetti C, La Piana R, Orcesi S, Egitto MG, Crow YJ, Fazzi E (2009) Aicardi-Goutieres syndrome: neuroradiologic findings and follow-up. AJNR Am J Neuroradiol 30:1971–1976. https://doi.org/10.3174/ajnr.A1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F et al (1995) Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 37:324–334. https://doi.org/10.1002/ana.410370308

    Article  PubMed  Google Scholar 

  137. van der Knaap MS, Boor I, Estevez R (2012) Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 11:973–985. https://doi.org/10.1016/S1474-4422(12)70192-8

    Article  PubMed  Google Scholar 

  138. van der Knaap MS, Bugiani M (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 134:351–382. https://doi.org/10.1007/s00401-017-1739-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. van der Knaap MS, Leegwater PA, Konst AA, Visser A, Naidu S, Oudejans CB et al (2002) Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol 51:264–270

    Article  Google Scholar 

  140. van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S et al (2001) Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 22:541–552

    PubMed  PubMed Central  Google Scholar 

  141. van der Knaap MS, Pronk JC, Scheper GC (2006) Vanishing white matter disease. Lancet Neurol 5:413–423. https://doi.org/10.1016/S1474-4422(06)70440-9

    Article  PubMed  Google Scholar 

  142. van Heteren JT, Rozenberg F, Aronica E, Troost D, Lebon P, Kuijpers TW (2008) Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi–Goutieres syndrome. Glia 56:568–578. https://doi.org/10.1002/glia.20639

    Article  PubMed  Google Scholar 

  143. Verkhratsky A, Augusto-Oliveira M, Pivoriunas A, Popov A, Brazhe A, Semyanov A (2021) Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 473:753–774. https://doi.org/10.1007/s00424-020-02465-3

    Article  CAS  PubMed  Google Scholar 

  144. Verkhratsky A, Marutle A, Rodriguez-Arellano JJ, Nordberg A (2015) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s disease. Neuroscientist 21:552–568. https://doi.org/10.1177/1073858414547132

    Article  CAS  PubMed  Google Scholar 

  145. Verkhratsky A, Parpura V (2016) Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis 85:254–261. https://doi.org/10.1016/j.nbd.2015.03.025

    Article  PubMed  Google Scholar 

  146. Verkhratsky A, Rodriguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588. https://doi.org/10.1177/1073858413510208

    Article  PubMed  Google Scholar 

  147. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S et al (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29:11511–11522. https://doi.org/10.1523/JNEUROSCI.1514-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vue TY, Kim EJ, Parras CM, Guillemot F, Johnson JE (2014) Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord. Development 141:3721–3731. https://doi.org/10.1242/dev.105270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR et al (2011) Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 31:6053–6058. https://doi.org/10.1523/JNEUROSCI.5524-09.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Weber B, Barros LF (2015) The astrocyte: powerhouse and recycling center. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a020396

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wen W, Sachdev P (2004) The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 22:144–154. https://doi.org/10.1016/j.neuroimage.2003.12.027

    Article  PubMed  Google Scholar 

  153. Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ, Couturier CP et al (2020) MAFG-driven astrocytes promote CNS inflammation. Nature 578:593–599. https://doi.org/10.1038/s41586-020-1999-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang Y, Jackson R (2019) Astrocyte identity: evolutionary perspectives on astrocyte functions and heterogeneity. Curr Opin Neurobiol 56:40–46. https://doi.org/10.1016/j.conb.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  155. Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886. https://doi.org/10.1016/j.cell.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  156. Yoon H, Walters G, Paulsen AR, Scarisbrick IA (2017) Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS ONE 12:e0180697. https://doi.org/10.1371/journal.pone.0180697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157. https://doi.org/10.1242/dev.004895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from ZonMw (TOP 91217006). M.S.v.d.K. is a member of the European Reference Network for Rare Neurological Disorders (ERN-RND), project ID 739510.

Author information

Authors and Affiliations

Authors

Contributions

BCP researched data for the article. MBu, BCP and JHKM discussed the content and wrote the manuscript. MBr designed schematic figures and commented on the manuscript. MSvdK provided the MRI images and MBu the histopathological images. MSvdK and MBu reviewed and edited the manuscript before submission. All the authors agreed on the content of the manuscript.

Corresponding author

Correspondence to Marianna Bugiani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugiani, M., Plug, B.C., Man, J.H.K. et al. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 143, 159–177 (2022). https://doi.org/10.1007/s00401-021-02391-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02391-3

Keywords

Navigation